基于概率地震需求分析的铅芯橡胶支座抗震性能研究
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
选取谱加速度为地震动强度参数,最大墩底弯矩为工程需求参数,对铅芯橡胶支座隔震简支梁桥与非隔震简支梁桥进行概率需求分析,定量计算研究铅芯橡胶支座对提高桥梁结构抗震性能作用。计算结果表明,隔震桥梁结构回归方程斜率均小于非隔震桥梁结构回归方程斜率,说明隔震结构对地震动强度改变的敏感性小于非隔震结构;场地危险性分析表明,同一场地桥梁结构体系遭遇某水平谱加速度的超越概率,隔震结构小于非隔震结构,应用隔震支座可降低桥梁结构对应的场地危险性;概率地震需求危险性分析表明,铅芯橡胶支座隔震桥梁结构发生墩底纵筋屈服年超越概率远小于非隔震结构概率。研究表明,概率地震需求分析方法可作为基于概率的定量分析方法用于不同结构体系的桥梁结构抗震性能评价。
By choosing spectral acceleration as an intensity magnitude parameter and maximum bending moment at pier bottom as an engineering demand parameter,probabilistic seismic demand analyses for a seismically isolated simply supported beam bridge with lead rubber bearing(LRB) and a non-isolated beam bridge were presented here,the function of LRB was studied with a quantitative computation method.The results of probabilistic seismic demand analysis(PSDA) showed that the regression slope of the isolated bridge is smaller than that of the non-isolated bridge;it means the bridge installed with LRB is less sensitive to increase in ground motion intensity.The results of probabilistic seismic hazard analysis showed that the exceeding probability of the isolated bridge encountering a certain spectral acceleration is lower than that of the non-isolated bridge,so using LRB decreases the bridge's hazard level.The results of probabilistic seismic demand hazard analysis indicated that LRB can greatly decrease the bridge's annual exceeding probability when the pier bottom reches yield with the site condition and structure parameters here.It was shown that probabilistic seismic demand analysis,as a probability-based quantitative analysis method,can be adopted in evaluation of different aseismic design methods or aseismic devices.
引文
[1]Porter K A.An overview of PEER’s performance-basedearthquake engineering methodology[C].Proceedings of the9th International Conference on Applications of Statistics andProbability(ICASP9)in Civil Engineering,2003,2:973-980.
    [2]Kevin M,Bozidar S,Seismic demands for performance-baseddesign of bridges[R].Pacific Earthquake EngineeringResearch Center,University of California,Berkeley,2003.
    [3]Shome N.Probabilistic seismic demand analysis of nonlinearstructures[D].PhD Dissertation:Stanford University,1999.
    [4]Kevin M,Bozidar S,Probabilistic seismic demand model forcalifornia highway bridges[J].Journal of BridgeEngineering,ASCE,2001,6(6):468-481.
    [5]Nielson B G,DesRoches R.Seismic fragility methodology forhighway bridges[C].Proceedings of the 2006 StructuresCongress,2006.
    [6]Zhang Y Y.Probabilistic structure seismic performanceassessment methodology and application to an actual bridge-foundation-ground system[D].PhD Dissertation:Universityof California,San Diego,2006.
    [7]Cornell C A.Engineering seismic risk analysis[J].Bulletinof the Seismological Society of America,1968,58(5):1583-1606.
    [8]Cornell C A,Jalayer F,Hamburger R O,et al.Aprobabilistic basis for 2000 SAC federal emergencymanagement agency steel moment frame guidelines[J].Journal of Structural Engineering,ASCE,2002,124(4):526-533.
    [9]钟铁毅,杨风利,吴彬.铅芯橡胶支座隔震铁路简支梁桥双向地震响应分析[J].中国铁道科学,2007,28(3):38-43.ZHONG Tie-yi,YANG Feng-li,WU Bin.Analysis of the bidi-rectional seismic response for seismically isolated railway sim-ple supported beam bridge by lead rubber bearing[J].China Railway Science,2007,28(3):38-43.
    [10]陈亮,李建中,管仲国,等.强地面运动持时对钢筋混凝土桥墩地震需求的影响[J].振动与冲击,2008,27(11):154-159.CHEN Liang,LI Jian-zhong,GUAN Zhong-guo,et al.Influ-ence of strong-motion duration on seismic inelastic demand for columns of RC bridges[J].Journal of Vibartion and Shock,2008,27(11):154-159.
    [11]吕大刚,于晓辉,潘峰,等.基于改进云图法的结构概率地震需求分析[J].世界地震工程,2010,26(1):7-15.LDa-gang,YU xiao-hui,PAN Feng,et al.Probabilistic seismic demand analysis of structures based on an improved cloud method[J].World Earthquake Engineering,2010,26(1):7-15.
    [12]Peer strong ground motion database[C].http://peer.berke-ley.edu/peer_ground_motion_database/.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心