1000kV角钢塔地震模拟振动台试验研究
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
为分析地震作用下1 000 kV特高压角钢输电塔动力反应特点以及导、地线质量对该塔架结构动力反应的影响,开展地震模拟振动台试验。选取4种不同类型的地震动输入,针对单塔及单塔悬挂集中质量进行8度烈度水准下的动力反应测试。试验结果表明:该型输电塔悬挂集中质量块后顺线路方向自振频率降低了2%,横线路方向自振频率降低了17%。对于绝缘子采用V型悬挂方式的杆塔结构,在计算塔动力特性时,垂直线路方向需考虑绝缘子连接方式及导线质量的影响。因该型输电塔结构横担较长,高宽比较小,地震反应有显著空间耦合性,地震作用下结构的扭转反应较易激起。总体而言,导线质量对输电塔抗震是有利的,塔线体系动力分析时考虑导线质量的影响将会更加真实地估计结构杆件内力。
To analyze seismic response characteristics of 1 000 kV angle steel transmission tower and the impact of the qualities of conductors and ground wire on dynamic response of tower structure,shaking table tests were carried out.Under four types of input ground motions the seismic response testing for single-tower with and without lumped mass that equals to the sum of all mass of conductors and ground wires under seismic intensity 8 were performed and compared.Experimental results show that the first natural vibration frequencies of the tower with lumped mass was reduced by 2% in the direction along the transmission line and by 17% in the direction transverse the transmission line than those of the tower without lumped mass in the two directions.For the tower structure using V-shaped suspension mode of insulators the impact of both connection mode of insulators and conductor mass should be considered in the calculation of the dynamic property of the tower in the direction transverse transmission line.Due to the longer cross arm of 1 000 kV transmission tower and the smaller height-width ratio of the cross arm,there is evident space coupling in the seismic response,so under the action of earthquake the torsion vibration mode would contribute a lot to the dynamic responses.In general,the mass of conductors is favorable to anti-earthquake of transmission tower,and during dynamic analysis on the tower-conductor system it is more reasonable to consider the impact of the mass of conductors in the evaluation of internal force of structural members.
引文
[1]刘振亚.特高压电网[M].北京:中国经济出版社,2005:25-35.
    [2]谢强,朱瑞元,周勇,等.220kV隔离开关地震模拟振动台试验[J].电网技术,2012,36(9):262-267.Xie Qiang,Zhu Ruiyuan,Zhou Yong,et al.Shake table test on 220kVdisconnecting switch[J].Power System Technology,2012,36(9):262-267(in Chinese).
    [3]谢强,管政,严承涌.1000kV输电塔横风向振动风洞试验研究[J].电网技术,2011,35(5):21-26.Xie Qiang,Guan Zheng,Yan Chengyong.Wind tunnel test onacross-wind vibration of 1 000 kV UHV transmission tower[J].PowerSystem Technology,2011,35(5):21-26(in Chinese).
    [4]谢强,严承涌.1000kV特高压交流同塔双回输电塔线耦联体系风洞试验[J].高电压技术,2010,36(4):900-906.Xie Qiang,Yan Chengyong.Wind tunnel test on 1000 kV UHV ACdouble circuit transmission tower-conductor coupling system[J].HighVoltage Engineering,2010,36(4):900-906(in Chinese).
    [5]Maeno Y,Hanada K,Sakamoto Y.Dynamic properties of UHVpower transmission towers:full-scale tests and numericalinvestigation[C]//8th WCEE.San Francisco,USA:[s.n.],1984:12-34.
    [6]Suzuki T.Seismic response characteristics of transmissions towers[C]//10 th WCEE.Balkema Rotterdam:[s.n.],1992:55-60.
    [7]Ghobarah A,Aziz T S,El-Attar M.Response of transmission lines tomultiple support excitations[J].Engineering Structures,1996,18(12):936-946.
    [8]岳茂光,李宏男,王东升,等.行波激励下输电塔—导线体系纵向地震反应分析[J].中国电机工程学报,2006,26(23):145-150.Yue Maoguang,Li Hongnan,Wang Dongsheng,et al.Longitudinalresponse of the power transmission tower-cable system undertraveling seismic wave excitations[J].Proceedings of the CSEE,2006,26(23):145-150(in Chinese).
    [9]曹枚根,周福霖,徐忠根,等.大跨越输电塔线体系减震控制分析研究[J].电网技术,2007,31(14):45-51.Cao Meigen,Zhou Fulin,Xu Zhonggen,et al.Research on seismiccontrol of large crossing transmission towers for transmission lines[J],Power System Technology,2007,31(14):45-51(in Chinese).
    [10]田利,李宏男,黄连壮.多点激励下输电塔—线体系的侧向地震反应分析[J].中国电机工程学报,2008,28(16):108-114.Tian Li,Li Hongnan,Huang Lianzhuang.Lateral response oftransmission tower-line system under multiple support excitations[J].Proceedings of the CSEE,2008,28(16):108-114(in Chinese).
    [11]沈国辉,孙炳楠,何运祥,等.大跨越输电塔线体系的地震响应研究[J].工程力学,2008,25(11):212-217.Shen Guohui,Sun Bingnan,He Yunxiang,et al.Seismic responsesof long-span transmission tower-line system[J].EngineeringMechanics,2008,25(11):212-217(in Chinese).
    [12]李泽.大跨越输电塔线体系地震反应分析[D].上海:同济大学,2002.
    [13]李宏男,陆呜,王前信.大跨越自立式高压输电塔-电缆体系的简化抗震计算[J].地震工程与工程振动,1990,10(2):81-89.Li Hongnan,Lu Ming,Wang Qianxin.Simplified a seismiccalculation of high voltage system consisting of long spantransmission lines and their supporting towers[J].EarthquakeEngineering and Engineering Vibration,1990,10(2):81-89(inChinese).
    [14]Li H N,Shi W.Simplified models and experimental verification forcoupled transmission tower-line system to seismic excitations[J].Journal of Sound and Vibration,2005,286(3):569-585.
    [15]朱伯龙.结构抗震试验[M].北京:地震出版社,1989:6-16.
    [16]谢强,白杰,薛松涛.特高压交流同塔双回输电塔地震模拟振动台试验[J].高电压技术,2012,38(6):1410-1419.Xie Qiang,Bai Jie,Xue Songtao.Shake table test on UHV AC doublecircuit transmission tower[J].High Voltage Engineering,2012,38(6):1410-1419(in Chinese).
    [17]上海市建设和管理委员会.DGJ08-9—2003建筑抗震设计规程[S].北京:中国建筑工业出版社,2003.
    [18]中华人民共和国国家标准.GB50260—1996电力设施抗震设计规范[S].北京:中国计划出版社,1996.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心