基于LLE方法的地震数据随机噪声压制
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
奇异值分解(SVD)方法在地震数据去噪中得到了较好的发展。在时间域或频率域进行随机噪声压制时,SVD技术往往对呈现线性模式的水平同相轴有较好的去噪效果。然而,对呈现非线性模式的弯曲同相轴效果不佳,从而限制了其在实际中的应用。为此,提出一种基于局部线性嵌入(LLE)的地震数据随机噪声压制方法,其思想是不考虑LLE方法的降维特性,而仅考虑其重构特性,利用局部线性嵌入的重构思想,对地震数据采样点用其近邻进行重构,得到去除随机噪声后的结果。正演模型及实际资料处理结果对比表明,该方法在有效压制随机噪声的同时,能够较好地保留非线性模式的有效信号,优于常规SVD滤波结果。
Singular Value Decomposition(SVD)has a better development in noise reduction for seismic data. SVD can achieve a better result for the horizontal events that show linear models. However, it can not achieve a good result for the curve events that show nonlinear models. This limits in practice. This paper proposes a random noise reduction method for seismic data based on Locally Linear Embedding(LLE). The idea is that it only considers the reconstruction properties of LLE, not considers its properties of dimension reduction. The method uses the reconstruction of Locally Linear Embedding to reconstruct each sample of seismic data by its neighborhoods. Then, the results after reducing random noise are obtained. The conducted results on forward model and real seismic data show that the proposed method not only can effectively reduce random noise, but also can keep the effective signals that show nonlinear models. And it is better than the SVD filtering result.
引文
[1]刘洋,王典,刘财,等.局部相关加权中值滤波技术及其在叠后随机噪声衰减中的应用[J].地球物理学报,2011,54(2):358-367.
    [2]Treitel S.The complex Wiener filter[J].Geophysics,1974,39(2):169-173.
    [3]李月,马海涛,林红波,等.基于核函数主成分的维纳滤波方法研究[J].地球物理学进展,2010,53(5):1226-1233.
    [4]Canales L L.Random noise reduction[C]//The 56th SEG Mtg,1984.
    [5]张军华,陆基孟.小波变换方法在地震资料去噪和提高分辨率中的应用[J].中国石油大学学报:自然科学版,1997,21(1):18-21.
    [6]倪林.一种更适合图像处理的多尺度变换——Curvelet变换[J].计算机工程与应用,2004,40(28):21-26.
    [7]Ramesh N,Domimique G,Mohamed T,et al.Coherent and random noise attenuation using the curvelet transform[J].The Leading Edge,2008,27(2):240-248.
    [8]陆文凯.基于离散余弦变换的地震随机噪声压制技术[J].石油地球物理勘探,2011,46(2):202-206.
    [9]Jones I F,Levy S.Signal-to-noise ratio enhancement in multi-channel seismic data via the Karhunen-Loeve transforms[J].Geophysical Prospecting,1987,35(1):12-32.
    [10]张念,刘天佑,李杰,等.Fast ICA算法及其在地震信号去噪中的应用[J].计算机应用研究,2009,26(4):1432-1434.
    [11]Bonar D,Sacchi M.Denoising seismic data using the nonlocal means algorithm[J].Geophysics,2012,77(1).
    [12]Buades A,Coll B,Morel J M.Image denoising method:a new nonlocal principle[J].SIAM Review,2010,52(1):113-147.
    [13]Wang J,Guo Y,Ying Y,et al.Fast nonlocal algorithm for image denoising[C]//IEEE International Conference on Image Processing,2006:1429-1432.
    [14]李亚峻,李月,杨宝俊,等.SVD与小波变换相结合抑制面波与随机噪声[J].计算机工程与应用,2007,43(31):182-184.
    [15]沈鸿雁.SVD地震波场分离与去噪技术在鄂尔多斯盆地地震资料处理中的应用[J].地球物理学进展,2012,27(5):2051-2058.
    [16]Shen H Y,Li Q C.Seismic wave fields sparation and noise attenuation in frequency domain var singular value decomposition[J].Near-Surface Geophysics and Human Activity,2008:178-181.
    [17]Roweis S T,Saul L K.Nonlinear dimensionality reduction by locally linear embedding[J].Science,2000,290(5500):2323-2326.

版权所有:© 2021 中国地质图书馆 中国地质调查局地学文献中心