可液化场地地震反应完全耦合动力分析及其验证
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
目前完全耦合的动力分析方法在液化场地地震响应分析上应用较少,本文利用完全耦合的动力分析方法,模拟了0.15 g和0.5 g加速度输入下的自由液化场地振动台试验以及实际液化场地的地震动变化情况。利用修正的Pastor-Zienkiewicz Mark-III模型来模拟砂土在地震荷载作用下的液化特性,并详细叙述了该模型参数的选取过程。分析结果表明:该方法能够较好模拟液化场地地表加速度和孔压比时程的变化规律,模拟出的地表加速度反应谱在整个频域内与实测的地表加速度反应谱呈现相同的变化规律。同时,也说明了本文选用模型参数方法的合理性。
This paper simulates two shaking table tests performing for ground liquefaction with seismic input of 0. 15 g and 0. 5 g as well as the Wildlife site where liquefaction was triggered during the Superstition Hills Earthquake,1987 using a fully coupled dynamic effective stress analysis. A modified generalized plasticity model is used to simulate cyclic mobility and liquefaction behavior of saturated sands. The parameters of the generalized plasticity model are calibrated from laboratory tests and conventional field investigations. The numerical results show that the simulated ground acceleration and the history of pore water pressure ratio accord well with the measurements. In addition,the calculated acceleration response spectra for the ground response correspond well with those of the measurements. Thus,the used fully coupled dynamic effective stress method is very effective in analyzing seismic response of liquefied site.
引文
[1]孙锐,袁晓铭.液化土层地震动模拟计算方法及验证[J].岩土力学,2007,28(S1):759-764.SUN Rui,YUAN Xiaoming.Method of simulating seismic ground motion in liquefiable soil layer[J].Rock and Soil Mechanics,2007,28(S1):759-764.(in Chinese)
    [2]吕西林,任红梅,李培振,等.液化场地自由场体系的数值分析及振动台试验验证[J].岩石力学与工程学报,2009,28(S2):4046-4053.LU Xilin,REN Hongmei,LI Peizhen,et al.Numerical analysis of free field system in liquefiable site and validation of shaking table tests[J].Chinese Journal of Rock Mechanics and Engineering,2009,8(S2):4046-4053.(in Chinese)
    [3]Pastor M,Zienkiewicz O C,Chan A H C.Generalized plasticity and the modeling of soil behavior[J].International Journal for Numerical and Analytical Methods in Geomechanics,1990,14(3):151-190.
    [4]Biot M A.Theory of propagation of elastic waves in a fluid-saturated porous solid[J].Journal of the Acoustical Society of America,1956,28(2):168-191.
    [5]黄茂松,李进军.饱和多孔介质土动力学理论与数值解法[J].同济大学学报:自然科学版,2004,32(7):851-856.HUANG Maosong,LI Jingjun.Dynamics of Fluid-saturated Porous Media and Its Numerical Solution[J].Journal of Tongji University:Natural Science,2004,32(7):851-856.(in Chinese)
    [6]Zienkiewicz O C,Chan A H C,Pastor M,et al.Computational geomechanics with special reference to earthquake engineering[M].New York:Wiley,2006.
    [7]Forum 8 Co.Ltd.Finite element fully coupled dynamic effective stress analysis program(UWLC),Electrical Manual,2006,http://www.forum8.co.jp.
    [8]Oka F,Yashima A,Shibata T,et al.FEM-FDM coupled liquefaction analysis of a porous soil using an elasto-plastic model[J].Applied Scientific Research,1994,52(3):209-245.
    [9]Cai F,Hagiwara T,Imamura S,et al.2D Fully coupled liquefaction analysis of sand ground under tank[C]∥Proceedings of the 11th Japan Earthquake Engineering Symposium,2002.(in Japanese)
    [10]Cai F,Ugai K,Wakai A,et al.Fully coupled dynamic effective stress analysis of the nigiri landslide triggered by 2004 Niigata-Chuetsu Earthquake[C]∥Proceedings of the International Symposium on Earthquake-Induced Landslides,2013.
    [11]Alyami M,Rouaini M,Wilkinson S M.Numerical analysis of deformation behavior of quay walls under earthquake loading[J].Soil Dynamics and Earthquake Engineering,2009,29(3):525-536.
    [12]Ertugrul,O,Trandafir,A.Reduction oflateral earth forces acting on rigid nonyielding retaining walls by EPS geofoam inclusions[J].Journal of Materials in Civil Engineering,2011,23(12):1711-1718.
    [13]XU Lingyu,CAI Fei,WANG Guoxin,et al.Numerical assessment of liquefaction mitigation effects on residential houses:case histories of the2007 Niigata Chuetsu-offshore earthquake[J].Soil Dynamics and Earthquake Engineering,2013,53:196-209.
    [14]凌贤长,王臣,王志强,等.自由场地基液化大型振动台模型试验研究[J].地震工程与工程振动,2003,23(6):138-143.LING Xianzhang,WANG Chen,WANG Zhiqiang,et al.Study on large-scale shaking table proportional model test for free-ground liquefaction arisen from earthquake[J].Earthquake Engineering and Engineering Vibration,2003,23(6):138-143.(in Chinese)
    [15]郑新亮.液化场地桥梁桩基础地震反应性能研究[D].大连:大连海事大学,2008.ZHENG Xinliang.Study on earthquake response of bridge piles at liquefiable site[D].Dalian:Dalian Marinetime University,2008.(in Chinese)
    [16]Patra C R,Sivakugan N.Relative density and median grain-size correlation from laboratory compaction tests on granular soil[J].International Journal of Geotechnical Engineering,2010,4(1):55-62.
    [17]Ishihara K.Simple method of analysis of liquefaction of sand deposits during earthquake[J].Soils and Foundations,1977,17(3):1-17.
    [18]张有良.最新工程地质手册[M].北京:中国知识出版社,2006.ZHANG Youliang.The latest engineering geology manual[M].Beijing:China Knowledge Publishing House,2006.(in Chinese)
    [19]Youd T L,Carter B L.Influence of Soil Softening and Liquefaction on Spectral Acceleration[J].Journal of Geotechnical and Geoenvironmental Engineering,2005,131(7):811-825.
    [20]Hardin B O,Drnevich V P.Shear modulus and damping in soils:Design equations and curves[J].Journal of the Soil Mechanics and Foundations Division,1972,98(7):667-692.
    [21]Suzuki Y,Tokimatsu K,Sanematsu T.Correlations between CPT Data and Soil Characteristics Obtained from SPT[J].Journal of Structural and Construction Engineering,2003,566:73-80.
    [22]Robertson P K,Fear C E.Liquefaction and sands and its evaluation[C]∥Proceedings of the 1st International Conference on Earthquake Geotechnical Engineering,1995.
    [23]Towhata I.Geotechnical Earthquake Engineering[M].Springer,2008:459-460.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心