增量动力分析法计算抗弯钢框架-薄钢板剪力墙体系的地震力折减系数和位移放大系数
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
基于薄钢板剪力墙的抗剪承载能力,收集多条人工地震波和天然地震波数据,按增量动力分析法计算出各条调幅地震波作用下结构的底部剪力和顶点位移,绘制出10层、15层和20层抗弯钢框架-薄钢板剪力墙体系的底部剪力-顶点位移曲线,进而计算各算例中震下的地震力折减系数R和大震下的位移放大系数Cd。结果表明:10层结构中震下的R平均值为2.7,大震下的Cd平均值为4.94;15层结构中震下的R平均值为2.77,大震下的Cd平均值为4.91;20层结构中震下的R平均值为2.5,大震下的Cd平均值为4.08。每条地震波所计算的R和Cd值都不相同;最大值R对应的地震波算出的Cd并不是最大,同样地,最小值R对应的地震波算出的Cd也不一定最小。
Based on a large number of artificial simulated earthquake waves and natural earthquake waves and the shear bearing capacity of thin steel plate shear wall(SPSW), the theory of incremental dynamic analysis was used to calculate the base shear and roof displacement of moment resisting steel frame-thin SPSW structure under each amplitude modulation seismic wave, and the base shear-roof displacement curves of 10-storey, 15-storey and 20-storey structure were drawn. Then the seismic force modification factor R under middle earthquake and displacement amplification factor Cd under the severe earthquake of each example were calculated. The results show that the average Runder middle earthquake is 2.7 and the average Cd under the severe earthquake is 4.94 for 10-storey structure. For 15-storey structure, the average R and Cd are 2.77 and 4.91, respectively. For 20-storey structure, the average R and Cd are 2.5 and 4.08, respectively. The obtained R and Cd under each seismic wave are not the same. The calculated Cd under the corresponding seismic wave with maximum R is not biggest. Similarly, the derived Cd from the corresponding seismic wave with minimum R is not minimal.
引文
[1]Alinia M M,Habashi H R.Characteristics of the wall frame interaction in steel plate shear walls[J].Journal of Constructional Steel Research,2010,66(2):150-158
    [2]Chamey F A.Applications in incremental dynamic analysis[C]//Proceedings of the 2005 Struct ures Congress and the 2005Forensic Engineering Symposium.New York,2005
    [3]李成.钢结构的增量动力分析(IDA)方法与应用[J].煤炭技术,2013,32(1):135-137(Li Cheng.Method and application of incremental dynamic analysis(IDA)of steel structures[J].Coal Technology,2013,32(1):135-137(in Chinese))
    [4]Mahmoudi M,Mohammad G A.Evaluating response modification factors of TADAS frames[J].Journal of Constructional Steel Research,2012,71(4):162-170
    [5]童根树.钢结构设计方法[M].北京:中国建筑工业出版社,2007
    [6]Zhao Yongfeng,Tong Genshu.Inelastic displacement amplification factor for ductile structures with constant strength reduction factor[J].Journal of Structural Engineering,2010,13(1):15-28
    [7]吕西林,蒋欢军.结构地震作用和抗震概念设计[M].武汉:武汉工业大学出版社,2004
    [8]邵建华.抗弯钢框架-钢板剪力墙的结构影响系数与位移放大系数研究[D].南京:河海大学,2008(Shao Jianhua.Research on structural influencing coefficient and deflection amplification factor of moment-resisting steel frame-steel plate shear wall[D].Nanjing:Hohai University,2008(in Chinese))

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心