基于可液化场地地震反应数值模拟的影响因素分析
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
饱和砂土地基在强震作用下会产生液化,导致其强度降低,并产生沉降、侧移和喷砂冒水等现象。基于YANG Zhao-hui提出的砂土液化本构模型,采用OpenSees对饱和砂土场地的地震反应进行了非线性动力有限元分析,阐述了液化机理以及对地基的作用;通过改变土性、地震动幅值、持时、频率等因素后数值模拟的对比,分析了各因素对可液化场地地震反应的影响。结果表明,饱和松砂场地更易产生液化;大震下场地更易产生液化;长持时的地震动更易造成液化;高频和低频的地震动均不易造成液化,而存在一个最易造成液化的中间频率值。
Saturated sand foundation will be liquefied under strong earthquakes,leading to strength decrease,with phenomena such as settlement,lateral slippage and wet sand blasting.Based on constitutive model for sand liquefaction proposed by YANG Zhao-hui,nonlinear dynamic finite element analysis of seismic responses of saturated sand site was executed by use of OpenSees;mechanism of liquefaction and effect on foundation were expounded.Furthermore,after changing soil property and amplitude,duration,frequency of earthquake,the results of numerical simulation were compared;influence of these factors on seismic responses of liquefiable site was analyzed.The results show that:saturated loose sand site is more likely to be liquefied;site is more likely to be liquefied under stronger earthquakes;long-duration earthquakes are more likely to cause liquefaction;high-frequency earthquakes and low-frequency earthquakes are both not likely to cause liquefaction,and an intermediate frequency most likely to cause liquefaction exists.
引文
[1]黑田晃.阪神-淡路大震災被害調査報告書[R].东京:建設コンサルタンツ協会,1996.75-80.Kuroda A.Report on seismic damages in HanshinAwaji Earthquake[R].Tokyo:Japan Society of Civil Engineering,1996.75-80.
    [2]Prevost J H.Nonlinear transient phenomena in saturated porous media[J].Computer Methods in Applied Mechanics and Engineering,1982,30(1):3-18.
    [3]Sandhu R S,Hong S J.Dynamics of fluid‐saturated soils—variational formulation[J].International Journal for Numerical and Analytical Methods in Geomechanics,1987,11(3):241-255.
    [4]鲁晓兵,谈庆明,俞善炳,等.垂向动载下饱和砂土液化发展的数值模拟[J].力学学报,2001,33(5):613-620.Lu X B,Tan Q M,Yu Sh B,et al.Numerical simulation of liquefaction of saturated sand under vertical vibration loading[J].Acta Mechanica Sinica,2001,33(5):613-620.
    [5]王刚,张建民.砂土液化后大变形的弹塑性循环本构模型[J].岩土工程学报,2007,29(1):51-59.Wang G,Zhang J M.A cyclic elasto-plastic constitutive model for evaluating large liquefaction-induced deformation of sand[J].Chinese Journal of Geotechnical Engineering,2007,29(1):51-59.
    [6]王刚,张建民.砂土液化变形的数值模拟[J].岩土工程学报,2007,29(3):403-409.Wang G,Zhang J M.Numerical modeling of liquefaction-induced deformation in sand[J].Chinese Journal of Geotechnical Engineering,2007,29(3):403-409.
    [7]Yang Z,Elgamal A,Parra E.Computational model for cyclic mobility and associated shear deformation[J].Journal of Geotechnical and Geoenvironmental Engineering,2003,129(12):1119-1127.
    [8]Prevost J H.A simple plasticity theory for frictional cohesionless soils[J].International Journal of Soil Dynamics and Earthquake Engineering,1985,4(1):9-17.
    [9]Ishihara K,Tatsuoka F,Yasuda S.Undrained deformation and liquefaction of sand under cyclic stresses[J].Soils and Foundations,1975,15(1):29-44.
    [10]Mroz Z.On the description of anisotropic workhardening[J].Journal of the Mechanics and Physics of Solids,1967,15(3):163-175.
    [11]Mazzoni S,McKenna F,Scott M H,et al.OpenSees Command Language Manual[EB/OL].http://opensees.berkeley.edu/OpenSees/manuals/usermanual/,2007-07-01.
    [12]Santucci de Magistris F,Lanzano G,Forte G,et al.A database for PGA threshold in liquefaction occurrence[J].Soil Dynamics and Earthquake Engineering,2013,(54):17-19.
    [13]胡聿贤.地震工程学[M].北京:地震出版社,2006.Hu Y X.Earthquake Engineering[M].Beijing:Seismological Press,2006.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心