新疆乌恰泉华地震前后泉水细菌群落的变化
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
为了解新疆乌恰泉华地震前后泉水细菌群落的变化,采用微生物纯培养方法结合16S rRNA基因序列系统发育分析法对地震前后泉水样品进行研究。结果表明,地震前和地震后可培养菌落的数目、菌群结构和优势菌都存在差异。地震前,25株菌分属于11个科12个属17个种,多数菌落归属于变形菌门γ亚群(Gammaproteobacteria)(82.63%),其中优势菌株为窄食单胞菌属某种。RB25(Stenotrophomonassp.RB25)(56.86%)和不动杆菌属某种.RB11(Acinetobactersp.RB11)(24.31%);地震后,27株菌分属于14个科17个属21个种,总细菌数量减少,但生物多样性提高,变形菌门α亚群(Alphaproteobacteria)(49.64%)上升为优势类群,优势菌株为根瘤菌属某种.RA42(Rhizobiumsp.RA42)(28.21%)。该研究为泉水微生物的映震研究积累了资料。
Spring water,which is one of the most active parts of the earth′s crust media,can actually and sensitively reflect the stress in the crust.Wuqia Sinter(40°25′07″-40°25′39″ N,75°09′37″-75°09′58″ E) lies in the linkage of the Tianshan Mountains and Kunlun Mountains in Wuqia County of Xinjiang,which is an earthquake-prone area.Wuqia Sinter is a very infrequent karst landform that is closely related to spring water.The sampling site(40°25′30″ N,75°09′58″ E) is the largest spring of Wuqia Sinter,approximately 146 km from the epicenter.In this study,we examined the spring bacterial community composition from Wuqia Sinter during the pre- and post-earthquake stages by using traditional microbiological culturability methods followed by 16S rRNA phylogenetic classification.Our objective was to preliminarily investigate the variation of a spring bacterial community from Wuqia Sinter under earthquake action.The results revealed that the culturable community number,community composition and the dominant microbes differed during these two stages.On R2A media,the culturable bacteria numbers corresponded for the pre- and post-earthquake stages were 13.15×102 CFU/mL and 2.00×102 CFU/mL,respectively.And on NA media,the culturable bacteria numbers corresponded for the pre- and post-earthquake stages were 7.88×102 CFU/mL and 0.87×102 CFU/mL,respectively.The culturable bacteria counts decreased significantly(P < 0.01) after the earthquake.R2A agar,a low-nutrient medium,is more suitable to culture the microbial in an oligotrophic water environment.Overall,52 CFU(25 from the pre-earthquake spring water and 27 from the post-earthquake spring water) were selected from the terminal positive dilution steps for analysis.Phylogenetic analysis of the bacterial 16S rRNA gene sequences showed that all isolates fell into one of the following six bacterial lineages: Actinobacteria,Alphaproteobacteria,Bacteroidetes,Deinococcus-Thermus,Firmicutes and Gammaproteobacteria.The following genera were detected in both the pre- and post-earthquake samples: Acinetobacter,Bacillus,Bosea,Brevundimonas,Deinococcus,Micrococcus,Rhizobium and Roseomonas.Additionally,the genera Lysobacter,Nocardiopsis,Stenotrophomonas and Streptomyces were no longer present after the earthquake,while Aeromonas,Arthrobacter,Flavobacterium,Kocuria,Mycetocola,Pedobacter,Planomicrobium,Rothia and Staphylococcus only appeared during the post-earthquake stage.Some strains had higher adaptability,which could exist in both the pre- and post-earthquake stages,including Rhizobium sp.RA42,Brevundimonas sp.RB44,Brevundimonas sp.RA61,Bosea sp.RA62,Roseomonas sp.RB63,Acinetobacter sp.NB115,Micrococcus sp.NB52,Deinococcus sp.RA45 and Bacillus sp.RA23.In the pre-earthquake stage,25 pre-earthquake colonies grouped into 17 phylotypes,and the majority of isolates were affiliated with the Gammaproteobacteria(82.63%),including two numerically dominant organisms,Stenotrophomonas sp.RB25(56.86%) and Acinetobacter sp.RB11(24.31%),which disappeared after the earthquake.While in the post-earthquake stage,27 post-earthquake colonies formed 21 phylotypes,the abundance of total bacterial decreased,but bacterial diversity was higher.The predominant groups among the post-earthquake isolates were Alphaproteobacteria(49.64%),including the numerically dominant Rhizobium sp.RA42(28.21%).Strains Stenotrophomonas sp.RB25,Acinetobacter sp.RB11 and Rhizobium sp.RA42 are likely to be as indicator strains during the pre- and post-earthquake period in Wuqia of Xinjiang,China.The results obtained in this study should provide a preliminary assessment of the responses of the spring microbial population in Wuqia Sinter to earthquakes,which will accumulate data for reflecting earthquake analysis of spring microorganisms.
引文
[1]Wang C M,Che Y T,Wan D K,Dong S Y.Research on Groundwater Mico-dynamic State.Beijing:Earthquake Press,1988:4-6.
    [2]Gao X Q,Li X Y,Xu QL,Li Y P,Zhang X M,Cui Y.Characteristics of earthquake precursory for dissolved CH4in ground water at the No.10spring,Urumqi.South China Journal of Seismology,2001,21(1):14-18.
    [3]Gao X Q,Xu Q L,Li Y P,Li X Y,Zhang X M,Cui Y.Reflecting earthquake analysis of discharge rate for the No.10 spring spot in Urumqi.Journal of Seismological Research,2001,24(3):233-237.
    [4]Wang D,Xu QL,Yushupov S S.Preliminary study on carbon isotope in groundwater on Tianshan seismic activity area.Inland Earthquake,2002,16(4):294-301.
    [5]Gao W Y.Relation between high value anomaly of radon at Qiyan spring of Dingxiang,Shanxi and seismicity of North China.Earthquake Researchin Shanxi,2006,(4):17-19.
    [6]Wang X,Zhao X M,He C J.Precursory anomalies of subsurface fluid before Jiangyang earthquake and Baoji earthquake at the Lingtong seismicstation.Journal of Catastrophology,2006,21(2):64-68.
    [7]Dilixiati K,Zhu C Y.Study on precursor anomalous characteristics of hydrochemistry in new No.10 spring before strong earthquakes.InlandEarthquake,2008,22(1):90-96.
    [8]Reasoner D J,Geldreich E E.A new medium for the enumeration and subculture of bacteria from potable water.Applied and EnvironmentalMicrobiology,1985,49(1):1-7.
    [9]Leclerc H,da Costa MS.The microbiology of natural mineral waters∥Senior D A G,Ashurst P,eds.Technology of Bottled Water.Sheffield:Sheffield Academic Press,1998:223-274.
    [10]Leclerc H,Moreau A.Microbiological safety of natural mineral water.FEMS Microbiology Reviews,2002,26(2):207-222.
    [11]Xiao L,Yang L Y,Yin D Q,Zhang MY.Experimental Technology of Environmental Microbiology.Beijing:China Environmental Science Press,2004:71-72.
    [12]Kim S B,Yoon J H,Kim H,Lee S T,Park Y H,Goodfellow M.A phylogenetic analysis of the genusSaccharomonosporaconducted with 16SrRNA gene sequences.International Journal of Systematic Bacteriology,1995,45(2):351-356.
    [13]Liu M,Xie L B,Yue C Y.The research of the methods of theStaphylococcus aureus’DNA extraction.Journal of Practical Training of Medicine,2007,35(2):123-125.
    [14]Gurtler V,Stanisich VA.Newapproaches to typing and identification of bacteria using the 16S-23S rDNAspacer region.Microbiology,1996,142(1):3-16.
    [15]Suzuki MT,Rappe MS,Haimberger Z W,Winfield H,Adair N,Strobel J,Giovannoni S J.Bacterial diversity among small-subunit rRNA geneclones and cellular isolates from the same seawater sample.Applied and Environmental Microbiology,1997,63(3):983-989.
    [16]McCaig AE,Glover L A,Prosser J I.Molecular analysis of bacterial community structure and diversity in unimproved and improved unpland grasspastures.Applied and Environmental Microbiology,1999,65(4):1721-1730.
    [17]Thompson J D,Higgins D G,Gibson T J.CLUSTAL W:improving the sensitivity of progressive multiple sequence alignment through sequenceweighting,position-specific gap penalties and weigh matrix choice.Nucleic Acids Research,1994,22(22):4673-4680.
    [18]Tamura K,Dudley J,Nei M,Kumar S.MEGA4:molecular evolutionary genetics analysis(MEGA)software version 4.0.Molecular Biology andEvolution,2007,24(8):1596-1599.
    [19]Fang A P,Ye W P.Origin 7.5 for Technology Plotting and Data Analyzing.Beijing:China Machine Press,2006:69-76.
    [20]Williams H N,Quinby H,Romberg E.Evaluation and use of a low nutrient medium and reduced incubation temperature to study bacterialcontamination in the water supply of dental units.Canadian Journal of Microbiology,1994,40(2):127-131.
    [21]Bai X H,Ge Z J,Xin Y,Fan X Y.Comparision of total bacteria measurement by two kinds of substrates to effluent of water machines.Environmental Monitoring in China,2006,22(6):22-24.
    [22]Farnleitner A H,Wilhartitz I,Ryzinska G,Kirschner AK T,Stadler H,Burtscher MM,Hornek R,Szewzyk U,Herndl G,Mach R L.Bacterialdynamics in spring water of alpine karst aquifers indicates the presence of stable autochthonous microbial endokarst communities.EnvironmentalMicrobiology,2005,7(8):1248-1259.
    [23]Pronk M,Goldscheider N,Zopfi J.Microbial communities in karst groundwater and their potential use for biomonitoring.Hydrogeology Journal,2009,17(1):37-48.
    [1]汪成民,车用太,万迪堃,董守玉.地下水微动态研究.北京:地震出版社,1988:4-6.
    [2]高小其,李新勇,许秋龙,李艳萍,张学敏,崔勇.乌鲁木齐10号泉地下水中溶解气甲烷的映震特征.华南地震,2001,21(1):14-18.
    [3]高小其,许秋龙,李艳萍,李新勇,张学敏,崔勇.乌鲁木齐10号泉流量的映震分析.地震研究,2001,24(3):233-237.
    [4]王道,许秋龙,III.C.尤素甫夫.天山地震活动区地下水中碳同位素的初步研究.内陆地震,2002,16(4):294-301.
    [5]高文玉.山西定襄七岩泉水氡高值异常与华北地震活动的关系.山西地震,2006,(4):17-19.
    [6]王新,赵小茂,何崇君.临潼温泉地下流体地震前兆异常分析.灾害学,2006,21(2):64-68.
    [7]地里夏提.克尤木,朱成英.新10号泉水化学测项中强地震前兆异常特征的研究.内陆地震,2008,22(1):90-96.
    [11]肖琳,杨柳燕,尹大强,张敏跃.环境微生物实验技术.北京:中国环境科学出版社,2004:71-72.
    [13]刘敏,谢利波,乐超银.金黄色葡萄球菌DNA提取方法的研究.实用医学进修杂志,2007,35(2):123-125.
    [19]方安平,叶卫平.Origin 7.5科技绘图及数据分析.北京:机械工业出版社,2006:69-76.
    [21]白小慧,戈志坚,邢一,范新元.两种培养基对饮水机出水中细菌总数的测定效果比较.中国环境监测,2006,22(6):22-24.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心