液化识别方法盲测对比——以2011年2月22日新西兰6.3级地震为例
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
液化实时监测作为减轻地震灾害的新手段,其核心技术是建立依据强震记录识别场地液化的方法,但目前所提出的方法十分有限,可靠性也缺少实际地震检验。2011年新西兰地震中液化及其震害现象显著,为检验现有液化识别方法提供了条件。目前已有并可供工程使用的四种液化识别方法为:Miyajima法、Suzuki法、KY法(Kostadinov和Yamazaki方法)以及SY法(孙锐和袁晓铭方法)。利用该次地震震中距小于50 km的全部27条原始加速度记录,对加速度记录场地液化情况进行盲测,为检验和改进方法提供基础。盲测结果表明:对于3个已报道液化的场地,KY法和SY法给出了正确结果,对1个已报道为非液化的场地,Suzuki法和SY法给出了正确结果;全部四种方法和三种方法识别结果相同的场地个数分别为4个和10个,占总数的52%,这14个结果中均包含SY法;几个方法总体识别结果差异较明显,差异最大的场地有5个,包括了不液化、疑似液化、液化可能性非常高等多种识别结果;对实际液化情况未知的23个场地,盲测结果是否正确还有待事实检验。
The real-time liquefaction monitoring and warming techniques are developing ways to mitigate liquefaction hazard.The key point for the techniques is to establish a reverse liquefaction detection method based on seismic records.However,the liquefaction detection methods now available are quite limited and the reliability of the methods is lack of verification by earthquake records.There is serious liquefaction damage during New Zealand earthquake in 2011,which creates a wonderful chance to examine the existing liquefaction detection methods.The 27 acceleration records within 50km from epicenter in the earthquake are employed to perform a blind detection for the four available methods,including Miyajima method,Suzuki method,KY(Kostadinov and Yamazaki) method as well as SY(Sun and Yuan) method.The blind detection results indicate that KY method and SY method obtain correct results for three liquefied sites,and Suzuki method and SY method are correct for the non-liquefied sites.The number of same identification results are four and ten by all four methods and three methods,respectively,which is totally 52% of all sites.The detecting results of the 14 sites by SY method are included.The difference of the detection results by the four methods is very obvious.The number of different detected sites is 5,including non-liquefied,suspicious liquefaction and liquefaction by different methods.These identified results will be verified by actual observation for the 23 sites,excluding the 4 confirmed sites.
引文
[1]胡聿贤,张郁山,梁建文.基于HHT方法的场地液化的识别[J].土木工程学报,2006,39(2):66-77.
    [2]Kostadinov M V,Yamazki F.Detection of soil liquefaction from strong motion records[J].Earthquake Engineering and Structural Dynamics,2001,30:173-193.
    [3]Shimizu Y,Watanabe A,Koganemaru K,et al.Super high-density real time disaster mitigation system[C]//Proceedings of 12thWorld Confer-ence of Earthquake Engineering.Auckland,New Zealand:Silverstream,2000.
    [4]孙锐,唐福辉,陈龙伟,等.现有液化识别方法对比分析[J].岩土力学,2011,32(S1):20-26.
    [5]Suzuki T,Shimizu Y,Nakayama W.Characteristics of strong motion records at the liquefied sites and judgment for liquefaction[C]//Proceedingsof 11th European Conference on Earthquake Engineering,Paris,France:Balkema,1998.
    [6]Miyajima M,Kitaura M,Nozu S.Detective method of liquefaction using strong ground motion records[C]//Proceedings of3rdChina-Japan-UStrilateral Symposium on Lifeline Earthquake Engineering,Kunming,China,1998:133-140.
    [7]孙锐,袁晓铭.基于强震记录快速识别场地液化的频率下降率法[J].岩土工程学报,2007,29(9):1372-1379.
    [8]Yuan X M,Sun R,Chen L W,et al.A method for detecting site liquefaction by seismic records[J].International Journal of Soil Dynamics andEarthquake Engineering,2010,30(4):270-279.
    [9]http://tech.sina.com.cn/d/2011-03-01/18205231620.shtml[Z].
    [10]http://www.bgci.org/resources/news/0776/[Z].
    [11]http://www.sis.school.nz/earthquake-update[Z].
    [12]http://www.stuff.co.nz/auckland/4717587/Nation-stops-to-remember-Christchurch-earthquake-victims[Z].
    [13]http://www.parliament.nz/en-NZ/PB/Business/QOA/d/5/9/49HansQ_20110310_00000010-10-Earthquake-Christchurch-Continuity-of.htm[Z].

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心