沉积盆地剥蚀量恢复方法
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
沉积盆地不整合面上地层剥蚀量恢复方法很多,按学科可分为4大类:基于古温标的地热学方法、基于地层学或沉积学原理的地质学方法、基于测井或地震数据的地球物理学方法和基于物质扩散或累积原理的地球化学方法。每类方法都有其自身的适用条件和局限性,实际应用中,必须根据盆地的发育、沉积构造演化以及不整合面分布等特征,选择最有效的方法或方法组合。分析认为:在数据质量可靠的情况下、并且同时满足地层构造层序中的下构造层较上构造层经历了更高的古地温这一基本条件,古温标镜质体反射率和磷灰石裂变径迹古地温梯度法是首选方法;对于中新生代沉积盆地,可以选择孔隙度法和或声波时差法与古地温梯度法相结合进行地层剥蚀量恢复;对于显生宙以来的多旋回叠合盆地,首先应该对盆地的沉积、构造演化历史进行仔细分析,利用地层对比法定性约束剥蚀量的范围,然后再应用地热学方法和或沉积波动分析法进行定量计算。
Multi-type restoration methods to estimate the thickness of eroded sedimentary rocks can be categorized into four types: geothermal,geological,geophysical and geochemical methods based on pa-leothermal index,stratigraphical or sedimentary principles,logging or seismic data and diffussion or accumulation theory,respectively.Every type has its own effective conditions or limits in application to estimate the eroded thickness of rocks.In practical application,it should make sure to select the most effective methods or their combinations according to development,structural evolution and unconformity surface of sedimentary basins.It was considered by integrated analysis that paleo-temperature vitrinite reflectence(Ro) and paleo-temperature gradiends of apatite fission-track(AFT) are primary choices under conditions of strata reliabilities in combination with basic condition that lower tectonic layer underwent higher paleo-temperature than upper sequence.As for Mesozoic-Cenozoic sedimentary basins,We can choose porosity methods and/or acoustic travel interval time in combination with paleo-temperature gradients to carry out restoration of eroded thickness.And for multicycle superimposed basins since Phanerozoic,we should carefully analyse sedimentary features and evolution history of basins,qualitatively constraint ranges of eroded thickness using stratigraphic correlation methods then quantitatively calculate using geothermal data and/or sedimentary wave analysis.
引文
1 Dow W G.Kerogan studies and geological interpretations[J].Journal of Geochemical Exploration,1977,7:79~99
    2何生,王青玲.关于用镜质体反射率恢复地层剥蚀厚度的问题讨论[J].地质论评,1989,35(2):119~126
    3胡圣标,张容燕.利用镜质体反射率数据估算地层剥蚀厚度[J].石油勘探与开发,1999,26(4):42~45
    4佟彦明,宋立军,曾少军等.利用镜质体反射率恢复地层剥蚀厚度的新方法[J].古地理学报,2005,7(3):417~424
    5王玮,周祖翼.镜质体反射率剖面反演中的不确定性分析:以鄂西渝东茶园1井为例[J].石油实验地质,2008,30(3):392~396
    6周礼成,王世成.用裂变径迹长度分布模拟地层剥蚀量和热史[J].石油学报,1994,15(3):26~34
    7王毅,金之钧.沉积盆地中恢复地层剥蚀量的新方法[J].地球科学进展,1999,14(5):482~486
    8周祖翼,廖宗廷.裂变径迹分析及其在沉积盆地研究中的应用[J].石油实验地质,2001,23(3):332~337
    9李伟.恢复地层剥蚀厚度方法综述[J].中国海上油气(地质),1996,10(3):167~171
    10王敏芳,焦养泉,黄传炎.地层剥蚀量恢复方法浅述[J].承德石油高等专科学校学报,2005,7(4):6~11
    11陈瑞银,罗晓容,陈占坤等.鄂尔多斯盆地中生代地层剥蚀量估算及其地质意义[J].地质学报,2006,80(5):685~693
    12王敏芳,黄传炎,徐志诚等.浅述地层剥蚀量恢复的基本原理与方法[J].海洋石油,2006,26(1):28~33
    13马立祥,万静萍.利用砂岩孔隙度演化趋势估计古地层剥蚀量的简易方法[J].石油实验地质,1991,13(1):53~56
    14何将启,周祖翼,江兴歌.优化孔隙度法计算地层剥蚀厚度:原理及实例[J].石油实验地质,2002,24(6):561~565
    15何将启,王宜芳.计算剥蚀厚度的优化孔隙度法:程序及应用[J].高校地质学报,2002,8(2):207~214
    16 Magara K.Thickness of removed sedimentary rocks,paleoporepressure,and paleotemperature,southwestern part of WesternCanada basin[J].AAPG Bulletin,1976,60:554~566
    17昝立声.声波时差曲线对确定生油岩高压带和地层剥蚀厚度的应用[J].中国海上油气(地质),1989,3(4):37~41
    18付晓飞,李兆影,卢双舫等.利用声波时差资料恢复剥蚀量方法研究与应用[J].大庆石油地质与开发,2004,23(1):9~11
    19齐永安,刘国臣.沉积盆地波动分析与不整合剥蚀量研究:以新疆塔里木盆地为例[J].焦作工学院学报,1999,18(3):161~165
    20张一伟,李京昌.原型盆地剥蚀量计算的新方法:波动分析法[J].石油与天然气地质,2000,21(1):88~91
    21张庆石,张吉,张庆晨.应用波动分析法研究三肇深层沉积剥蚀史[J].大庆石油地质与开发,2001,20(6):23~24
    22刘国勇,杨明慧.沉积盆地波动过程分析方法在中国的应用[J].世界地质,2004,23(3):295~300
    23陈增智,柳广弟,郝石生.修正的镜质体反射率剥蚀厚度恢复方法[J].沉积学报,1999,17(1):141~144
    24 Burnham A K,Sweeney J J.A chemical kinetic model of vi-trinite maturation and reflectance[J].Geochimica et Cosmo-chimica Acta,1989,53(10):2649~2657
    25 Gleadow A J W,Duddy I R,Lovering J F.Fission track ana-lysis:a new tool for the evolution of thermal histories and hy-drocarbon potential[J].Australian Petrol Explor Assoc J,1983,23:93~102
    26 Laslett G M,Green P F,Duddy I R,et al.Thermal annealingof fission tracks in apatite 2:A quantitative analysis[J].Chemical Geology(Isotope Geoscience section),1987,65(1):1~13
    27 Ketcham R A,Carter A,Donelick R A,et al.Improvedmeasurement and modeling of fission tracks in apatite[J].Geochimica et Cosmochimica Acta,2006,70(18,Supplement1):316~577
    28 Wagner G A,Gleadow A J,Fitzgerald P G.The significanceof the partial annealing zone in apatite fission-track analysis:Projected track length measurements and uplift chronology ofthe transantarctic mountains[J].Chemical Geology(IsotopeGeoscience section),1989,79(4):295~305
    29朱光.胶北蓬莱群板岩的伊利石结晶度及其变质等级和地质意义[J].合肥工业大学学报:(自然科学版),1994,17(1):172~177
    30朱光.用伊利石结晶度确定碎屑沉积岩甚低级变质等级[J].石油勘探与开发,1995,22(1):33~35
    31徐春华,朱光,刘国生等.伊利石结晶度在恢复地层剥蚀量中的应用:以合肥盆地安参1井白垩系剥蚀量的恢复为例[J].地质科技情报,2005,24(1):41~44
    32牟中海,唐勇,崔炳富等.塔西南地区地层剥蚀厚度恢复研究[J].石油学报,2002,23(1):40~44
    33付广,王朋岩,杨勉.地层剥蚀对天然气扩散散失影响的定量研究[J].新疆石油地质,2002,23(1):32~34
    34张一伟,金之钧.塔里木盆地环满加尔地区主要不整合形成过程及剥蚀量研究[J].地学前缘,2000,7(4):449~457
    35 Magara K.压实与流体运移[M].北京:石油工业出版社,1981
    36郑朝阳,罗秋霞.应用计算机模型恢复盆地的热演化史[J].石油实验地质,1991,13(4):380~389
    37刘景彦,姜亮.用声波测井资料计算剥蚀量的方法改进[J].石油实验地质,2000,22(4):302~306
    38孔屏,那春光.青藏高原的剥蚀与构造抬升[J].第四纪研究,2007,27(1):1~5
    39 Norton K P,Blanckenburg F,Schlunegger F,et al.Cos-mogenic nuclide-based investigation of spatial erosion and hill-slope channel coupling in the transient foreland of the SwissAlps[J].Geomorphology,2008,95(3-4):474~486
    40 Bierman P R,Marsella K A,Patterson C,et al.Mid-Pleisto-cene cosmogenic minimum-age limits for pre-Wisconsinan gla-cial surfaces in southwestern Minnesota and southern BaffinIsland:a multiple nuclide approach[J].Geomorphology,1999,27(1,2):25~39
    41鲁雪松,蒋有录,常振恒等.东濮凹陷东营组地层剥蚀厚度估算及其意义[J].地质科技情报,2007,26(2):8~12
    42李海亮,陈启林,朱允辉等.波形分析技术在识别小断层和剥蚀线中的应用[J].新疆石油地质,2007,28(2):232~234
    43付广,王朋岩,马福建.地层剥蚀对油气沿断裂渗滤散失影响的定量研究[J].断块油气田,2001,8(5):8~11
    44吴智平,刘继国,张卫海等.辽河盆地东部地区新老第三纪界面地层剥蚀量研究[J].高校地质学报,2001,7(1):99~105
    45牟中海,罗仁泽,崔炳富等.塔西南地区二叠系剥蚀厚度恢复[J].天然气工业,2001,21(2):41~43
    46 Libarkin J C,Riihimaki C A,Farley K A.Terrestrial cos-mogenic nuclides as paleoaltimeters:New approaches and fu-ture potential[J].Geochimica et Cosmochimica Acta,2006,70(18,Supplement 1):356~366
    47 Kober F,Ivyochs S,Schlunegger F,et al.Denudation rates and atopography-driven rainfall threshold in northern Chile:Mul-tiple cosmogenic nuclide data and sediment yield budgets[J].Geomorphology,2007,83(1,2):97~120
    48 Gosse J C,Phillips F M.Terrestrial in situ cosmogenic nu-clides:Theory and application[J].Quaternary Science Re-views,2001,20(14):1475~1560
    49 Lal D,Chen J.Cosmic ray labeling of erosion surfaces II:Special cases of exposure histories of boulders,soils and beachterraces[J].Earth and Planetary Science Letters,2005,236(3,4):797~813
    50蒂索B P.石油形成和分布[M].郝石生译.北京:石油工业出版社,1982
    51 Waples D W.The art of maturity medeling[J].AAPG Bulle-tin,1992,76(1):31~46
    52 Gleadow A J,Duddy I R,Green P F,et al.Fission tracklengths in the apatite annealing zone and the interpretation ofmixed ages[J].Earth and Planetary Science Letters,1986,78(2,3):245~254
    53李海亮,朱允辉,王宏波等.波形分析技术在识别小断层和剥蚀线中的应用[J].西北油气勘探,2006,18(3):35~39
    54谢志清,闫小雄,周立发.三塘湖盆地下白垩统剥蚀量恢复及其对油气生成的影响[J].石油实验地质,2001,23(1):52~55

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心