西秦岭新生代以来地质构造过程对青藏高原隆升和变形的约束
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
西秦岭位于青藏高原东北缘重力梯度带内,是高原物质向北、向东扩展的前缘,其新生代以来地质构造-地貌过程应该是印度板块—欧亚板块的碰撞造山过程和高原隆升过程的一部分。通过对西秦岭内部中—新生代沉积、变形及地貌记录的初步综合分析,得出如下初步认识:(1)根据西秦岭中—新生代红层沉积岩石组合和构造变形特征,可以分为晚侏罗世—早白垩世、晚白垩世—古近纪和新近纪三个构造层,分别对应于西秦岭新生代3个构造演化阶段。(2)西秦岭晚白垩世—古近纪构造层的褶皱缩短和区域断裂带的逆冲推覆发生在古近纪末期—新近纪初期,与整个青藏高原主要逆冲推覆构造事件同步,说明印度板块与欧亚板块碰撞的构造应力在古近纪末已波及至西秦岭。(3)西秦岭新近纪以来经历了一个构造相对稳定的侵蚀夷平期,于3.6Ma之前形成了以晚白垩世—古近纪构造层侵蚀面、前新生代碳酸盐地层的岩溶夷平面为标志的主夷平面以及夷平面发育过程中形成新近纪近水平的、以红色粘土岩为主要特征的细碎屑沉积。这一夷平面可以作为高原组成部分的西秦岭隆升的基准面。该夷平面现今高程自西向东逐渐降低,反映了西秦岭隆升呈现自西向东连续的扩展。(4)青藏高原南部构造变形方式在中新世发生了由逆冲推覆-褶皱缩短向伸展走滑的构造转换,而在西秦岭内部却并未发生这样的构造转换,仍然以逆冲构造为主,只是西秦岭北缘的边界断层在中—晚更新世才发生逆冲-左旋走滑作用,这可能指示了青藏高原东北缘晚新生代构造变形的走滑作用只是构造块体边界与构造挤压应力方向下非正交的应力分解所致,同时也可能反映了作为西秦岭块体整体滑移和块体内部的收缩变形并行不悖。(5)由GPS观测数据确定的区域位移场应该指示了现今西秦岭块体的整体缓慢的向东移动,地震机制解确定的构造应力是下地壳向东蠕动拖曳脆性上地壳的整体运动,西秦岭地壳厚度由西向东逐渐增厚是西部由于南北向缩短增厚的下地壳向东扩展流动的结果,增厚地壳的均衡抬升是西秦岭地貌面高度变化的内在原因。
The Cenozoic tectonic and geomorphological processes of the west Qinling as a part of Qinghai-Tibetan plateau could provide some constraints on the uplift and deformation model of the Qinghai-Tibetan plateau.Based on the analysis of the Cenozoic sedimentary strata and its deformation features,regional fault framework and its kinematics,and geomorphological records,we could reach the following preliminary understanding.(1)Based on their rock composition,spatial distribution and tectonic deformation characteristics,we can divide the Late Mesozoic-Cenozoic red bed sedimentary strata in the west Qinling into the Late Jurassic-Early Cretaceous,the Late Cretaceous-Paleogene and the Neogene three tectonic strata units,which corresponds to three tectonic evolution stages.(2)The fault-thrusting and fold-shortening of K2-E strata in the west Qinling occurred at the end of Eocene,synchronous with the crust shortening and thrusting in the Qinghai-Tibetan plateau,which may indicate that the compressive tectonic stress from the collisional convergence between the India plate and the Eurasia plate have been transmitted to the west Qinling.(3)The west Qinling had undergone a relatively tectonic stable period since the Neogene,in which extensive erosion and planation occurred,and finally main planation surface and associated Neogene sedimentary strata consisting of red conglomerate and red clay were formed before 3.6 Ma.This planation surface at present-day decreased gradually from 3200 m in the west to 1200 m in the east,which can be interpreted as continuous uplift in the eastward expansion of the Qinghai-Tibetan plateau.(4)The structural deformation transition from thrusting-shortening to extension-strike slip at 13-14 Ma or 8 Ma in the south Tibet have not appeared widely in the west Qinling,whereas fault thrusting predominated the total Cenozoic tectonic history and left-lateral strike-slip only occurred in the northern boundary fault of the west Qinling,which may indicate that block slip and thrusting coexisted in the west Qinling.(5)The regional displacement field determined by the GPS observational data and tectonic stress directions deduced by earthquake mechanism solution showed eastward motion of the west Qinling block and E-directed tectonic stress,which may reflect that eastward creep of low crust drags upper crust movement and uplift.The gradient zone of the crust thickness of the west Qinling could be interpreted as the result of eastward expansion creep of the thickened lower crust,which controlled main landform features of the west Qinling.
引文
[1]陕西地质局区测队.1∶20万岷县(I-48-XV)、陇西(I-48-IX)、武都(I-48-XXI)、文县(I-48-XV)幅地质图及说明书(1∶20万),1970;甘肃地质局第一区域地质测量大队.9-48-(8)(临潭)幅地质图及说明书,1971。
    [2]甘肃省地质矿产局第一地质大队.1∶5万宕昌幅(I-48-65-D)、兴化幅(I-48-66-C)、大河坝幅(I-48-77-B)、良恭镇幅(I-48-78-A)地质图及区域地质调查报告,1988;甘肃省地质调查院.1∶5万岷县幅(I48E010009)地质图及说明书,2001。
    [1]陕西地质局区测队.1∶20万岷县(I-48-XV)、陇西(I-48-IX)、武都(I-48-XXI)、文县(I-48-XV)幅地质图及说明书(1∶20万),1970;甘肃地质局第一区域地质测量大队.9-48-(8)(临潭)幅地质图及说明书,1971。
    [2]甘肃省地质矿产局第一地质大队.1∶5万宕昌幅(I-48-65-D)、兴化幅(I-48-66-C)、大河坝幅(I-48-77-B)、良恭镇幅(I-48-78-A)地质图及区域地质调查报告,1988;甘肃省地质调查院.1∶5万岷县幅(I48E010009)地质图及说明书,2001。
    [1]Xu Z Q,Yang J S,Jiang M,et al.Continental subduction and uplifting of the orogenic belts at the margin of the Qing-hai-Tibet Plateau[J].Earth Science Frontiers,1999,6(3):139-151(in Chinese).
    [2]Yin A,Peng C,Feng R.Geological evolution of Himalaya o-rogenic belt-Asian Continental Accretion in Phanerozoic Eon[M]∥Zhang Y X,Yin A.Structures,Evolution and Dy-namics of the Earth.Beijing:Higher Education Press,2002:208-282(in Chinese).
    [3]Yin A,Harrison P.Geological evolution of the Himalayan-Tibet orogen[J].Annu Rev Earth Planet Sci,2000,28:211-280.
    [4]Molnar P,Tapponnier P.Cenozoic tectonics of Asia:Effects of a continental collision[J].Science,1975,189:419-425.
    [5]Tapponnier P,Molnar P.Slip-line fieldtheory andlarge scale continental tectonics[J].Nature,1976,82:2905-2930.
    [6]Tapponnier P,Mercier J L,Proust F,et al.Propagating ex-trusion tectonics in Asia:New insight from simple experi-ments with plasticine[J].Geology,1982,10:611-616.
    [7]Tapponnier P,Xu Z,Roger E,et al.Oblique stepwise rise and growth of the Tibetan Plateau[J].Science,2001,294:1671-1677.
    [8]Zheng D,Yao T D.Uplift of Qinghai-Tibetan Plateau andIts Environmental Effects[M].Beijing:Science Press,2004(in Chinese).
    [9]Li J,Fang X M.Uplift and environmental change of Qinghai-Tibetan plateau[J].Chinese Science Bulletin,1999,44(23):2217-2244.
    [10]Li J J,Fang X M,Pan B T,et al.Qinghai-Tibet plateau vio-lent uplift and influence upon circumjacent environment in Late Cenozoic[J].Quaternary Sciences,2001,21(5):381-391(in Chinese).
    [11]Shi Y F,Li J J,Li B Y,et al.Uplift and Environmental Change in Qinghai-Xizang(Tibetan)Plateau in the Late Ce-nozoic[M].Guangzhou:Guangzhou Science and Technology Press,1988:1-463(in Chinese).
    [12]Liu D S.Outline of quaternary environment of China[M]∥Williams AJ,Dunkerley D L,Deckkar P,et al.Quaternary Environment.Beijing:Science Press,1997:189-239(in Chi-nese).
    [13]An Z S,Kutzback J E,Prell WL,et al.Evolution of Asia monsoons and phased uplift of the Himalaya-Tibetan Plateau since late Miocene times[J].Nature,2001,411:62-66.
    [14]Bureau of Geology and Mineral Recourses of Gansu Province.Regional Geology of Gansu Province[M].Beijing:Geological Pubishing House,1989:244-320(in Chinese).
    [15]Zhang E P.Geological Map of Qinling-Daba Mountains and Adjacent Region of the People s Republic of China[M].Bei-jing:Geological Publishing House,1992(in Chinese).
    [16]Editorial Committee of the Collection of Geological Maps of China.The Collection of the Geological Maps of China[M].Beijing:Geological Publishing House,2002(in Chinese).
    [17]Jiang X W,Wang J H,Zhang H H.Coupling between strike-slip faults and basins:The evidence for Cenozoic east-ward extrusion of the Qinling-Songgan Block[J].Earth Sci-ence Frontiers,2003,10(2):201-207(in Chinese).
    [18]Wang Z C,Zhang P Z,Zhang G L,et al.Tertiary tectonic activities of the north frontal fault zone of west Qinling mountains:Implication for the growth of the northeastern margin of Qinghai-Tibet Plateau[J].Earth Science Fron-tiers,2006,13(4):119-135(in Chinese).
    [19]Li J J,Fang X M,Ma HZ,et al.Geomorphologic and envi-ronmental evolutioninthe upper reaches of Yellow River dur-ing the Late Cenozoic[J].Science in China:Series D,1996,26(4):316-322(in Chinese).
    [20]Wang X X,Li J J,Song C H,et al.Cenozoic uplift of west Qinling,northeast margin of Tibetan Plateau:The record of detrital apatite fission track data in Tianshui Basin[J].Acta Sedimentologica Sinica,2006,24(6):783-789(in Chinese).
    [21]Zhang G W,Zhang B R,Yuan X C,et al.Qinling Continen-tal Orogenic Belt and Continental Dynamics[M].Beijing:Science Press,2001:1-855(in Chinese).
    [22]Yuan D Y,Yang M.Research on the features of displace-ment cumulative slip deficits and segmentationinthe northern fault zone of western Qinling[J].Seismological Research,1999,22(4):382-389(in Chinese).
    [23]Lanzhou Institute of Seismology of CEA,Plan Committee of Gansu Province.Research on the Seismic Hazard Analysis and Earthquake Zonation[M].Lanzhou:Lanzhou University Press,1993:1-158(in Chinese).
    [24]Pan B T,Gao H S,Li B Y,et al.Step-like landforms and uplift of the Qinghai-Xizang Plateau[J].Quaternary Sci-ences,2004,24(1):50-58(in Chinese).
    [25]Blisniuk MP,Hacker R B,Glodny J,et al.Normal faulting in central Tibet since at least13.5Ma ago[J].Nature,2001,412:628-632.
    [26]Coleman M,Hodges K.Evidence for Tibetan Plateau uplif-ted before14Myr ago froma new minimal age for east-west extension[J].Nature,1995,374:49-52.
    [27]Harrison T M,Copeland P,Kidd WS F,et al.Activation of the Nyainqentanghla shear zone:Implications for uplift of southern Tibetan Plateau[J].Tectonics,1995,14(3):658-676.
    [28]Hodges K V.Tectonics of the Himalaya and Southern Tibet fromtwo perspectives[J].Bulletin of the Geological Society of America,2000,112(3):324-350.
    [29]Turner S,Hawkesworth CJ,Liu J,et al.Timing of Tibetan uplift constrained by analysis of volcanic rocks[J].Nature,1993,364:50-53.
    [30]Williams H,Turner S,Kelley S,et al.Age and composition of dikes in Southern Tibet:Newconstraints on the timing of east-west extension andits relationshipto post collisional vol-canism[J].Geology,2001,29(4):339-342.
    [31]Zheng D W,Zhang P Z,Wan J L,et al.Late Cenozoic de-formation subsequence in northeastern margin of Tibet—De-trital AFTrecords from Linxia Basin[J].Science in China:Series D,2003,46(Suppl):266-275.
    [32]Wu Z H,Wu Z H,Jiang W,et al.The Tectonic Evolution and Mechanism of Tectonic-Landforms of China Continent and Its Adjacent Areas[M].Beijing:Geological Pubishing House,2001:1-274(in Chinese).
    [33]Zhu L D,Wang C S,Yi HS,et al.Basin systemevolution and formation time of Qinghai-Xizang Plateau[J].Journal of Chengdu University of Technology:Science and Technology Edition,2004,31(3):249-255(in Chinese).
    [34]Wu Z H,Barosh P J,Wu Z H,et al.Vast Early Miocene lakes of the Central Tibetan Plateau[J/OL].Bulletin of Geo-logical Society of America,2008,120(9/10):1326-1337,doi:10.1130/B26043.1.
    [35]Wu Z H,Wu Z H,Hu D G,et al.Geological evidence for the Tibetan Plateau upliftedin late Oligocene[J].Acta Geo-logica Sinica,2007,81(5):577-587(in Chinese).
    [36]Armijo R,Tapponnier H,Tonglin H.Late-Cenozoic right-lateral strike-slip faulting in Southern Tibet[J].J Geophys Res,1989,94:2787-2838.
    [37]Avouac J P,Taponnier P.Kinematic model of active deform-ationin central Asia[J].Geophys Res Lett,1993,2:895-898.
    [38]England P,Houseman G A.Finite strain calculations of con-tinental deformation:Comparison with the India-Asia colli-sion[J].J Geophys Res,1986,91:3664-3667.
    [39]Zhang P Z,Gan WJ,Shen Z K,et al.Acoupling model of rigid-block movement and continuous deformation:Pattern of the present-day deformation of China s continent and its vic-inity[J].Acta Geologica Sinica,2005,79(6):367-377(in Chinese).
    [40]Zhang P Z,Shen Z K,Wang M,et al.Kinematics of pres-ent-day tectonic deformation of the Tibetan plateau and its vicinities[J].Seismology and Geology,2004,26(3):367-377(in Chinese).
    [41]Zhang P Z,Shen Z K,Wang M,et al.Continous deforma-tion of the Tibetan Plateaufromglobal positioning systemda-ta[J].Geology,2004,32(9):809-812.
    [42]Royden L H,Buechifiel B C,King R W,et al.Surface de-formation and lower crustal flowin eastern Tibet[J].Sci-ence,1997,276:788-790.
    [43]Wang C Y,Lou H,Lu Z Y,et al.S-wave crustal and upper mantle s velocity structure in the eastern Tibetan Plateau—Deep environment of lower crustal flow[J].Sciencein China:Series D,2008,51(2):263-274.
    [44]Xie F R,Zhang S M,Dou S Q,et al.Evolution characteris-tics of Quaternary tectonic stress field in the north and east margin of Qinghai-Xizang Plateau[J].Acta Seismologica Sin-ica,1999,21(5):502-512(in Chinese).
    [45]Wang H Y,Gao R,Ma Y S,et al.Basin-range coupling and lithosphere structure between the Zolge and the west Qinling[J].Chinese J Geophys,2007,50(2):472-481(in Chinese).
    [46]Gao R,Ma J S,Li Q S,et al.Structure of the lower crust beneath the Songpan block and west Qinling orogen and their relation as revealed by deep seismic reflection profiling[J].Geological Bulletin of China,2006,25(12):1361-1367(in Chinese).
    [47]Zhou M D,Lu T Y,Zhang YS,et al.The geological struc-tural background and crustal structure in the northeastern margin of the Qinghai-Tibetan Plateau[J].Acta Seismologica Sinica,2000,22(6):645-653(in Chinese).
    [1]许志琴,杨经绥,姜牧,等.大陆附冲作用及青藏高原周缘造山带的崛起[J].地学前缘,1999,6(3):139-151.
    [2]尹安,彭聪,冯锐.喜马拉雅—青藏高原造山带地质演化——显生宙亚洲大陆增生[M]∥张有学,尹安.地球结构、演化和动力学.北京:高等教育出版社,2002:208-282.
    [8]郑度,姚檀栋.青藏高原隆升与环境效应[M].北京:科学出版社,2004.
    [10]李吉均,方晓敏,潘保田,等.新生代晚期青藏高原强烈隆起及其对周边环境的影响[J].第四纪研究,2001,21(5):381-391.
    [11]施雅风,李吉均,李炳元,等.青藏高原晚新生代隆升与环境变化[M].广州:广州科技出版社,1998:1-463.
    [12]刘东生.中国第四纪环境概要[M]∥Williams AJ,Dunker-ley D L,Deckkar P,等.第四纪环境.北京:科学出版社,1997:189-239.
    [14]甘肃省地质矿产局.甘肃省区域地质志[M].北京:地质出版社,1989:244-320.
    [15]张二朋.秦岭—大巴山及临区地质图(1∶1000000)[M].北京:地质出版社,1992.
    [16]中国地质图集编委会.中国地质图集[M].北京:地质出版社,2002.
    [17]姜晓玮,王江海,张会华.西秦岭断裂走滑与盆地的耦合:西秦岭—松甘块体新生代向东走滑挤出的证据[J].地学前缘,2003,10(2):201-207.
    [18]王志才,张培震,张广良,等.西秦岭北缘构造带的新生代构造活动:兼论青藏高原东北缘形成过程的指示意义[J].地学前缘,2006,13(4):119-135.
    [19]李吉均,方晓敏,马海洲,等.晚新生代黄河上游地貌演化与青藏高原隆起[J].中国科学:D辑,1996,26(4):316-322.
    [20]王修喜,李吉均,宋春晖,等.青藏高原东北缘西秦岭新生代抬升:天水盆地碎屑颗粒磷灰石裂变径迹记录[J].沉积学报,2006,24(6):783-789.
    [21]张国伟,张本仁,袁学诚,等.秦岭造山带与大陆动力学[M].北京:科学出版社,2001:1-855.
    [22]袁道阳,杨明.西秦岭北缘断裂带的位移累计滑动亏损特征及其破裂分段性研究[J].地震研究,1999,22(4):382-389.
    [23]国家地震局兰州地震研究所,甘肃省计划委员会.甘肃省地震危险区划研究[M].兰州:兰州大学出版社,1993:1-158.
    [24]潘宝田,高红山,李炳元,等.青藏高原层状地貌与高原隆升[J].第四纪研究,2004,24(1):50-58.
    [32]吴珍汉,吴中海,江万,等.中国大陆及邻区新生代构造-地貌演化过程与机理[M].北京:地质出版社,2001:1-274.
    [33]朱利东,王成善,伊海生,等.青藏高原盆地系统演化与高原形成时间[J].成都理工大学学报:自然科学版,2004,31(3):249-255.
    [35]吴珍汉,吴中海,胡道功,等.青藏高原渐新世晚期隆升的地质证据[J].地质学报,2007,81(5):577-587.
    [39]张培震,甘卫军,沈正康,等.中国大陆现今构造作用的地块运动和连续变形耦合模型[J].地质学报,2005,79(6):367-377.
    [40]张培震,沈正康,王敏,等.青藏高原及周边现今构造变形的运动学[J].地震地质,2004,26(3):367-377.
    [44]谢富仁,张世民,窦素芹,等.青藏高原北东边缘第四纪构造应力场演化特征[J].地震学报,1999,21(5):502-512.
    [45]王海燕,高锐,马永生,等.若尔盖与西秦岭地震反射岩石圈结构和盆山耦合[J].地球物理学报,2007,50(2):472-48l.
    [46]高锐,马季生,李秋生,等.松潘地块与西秦岭造山带下地壳的性质和关系——深地震反射剖面的揭露[J].地质通报,2006,25(12):1361-1367.
    [47]周民都,吕太乙,张元生,等.青藏高原东北缘地质构造背景及地壳结构研究[J].地震学报,2000,22(6):645-653.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心