东昆仑、玉树、汶川地震的发生规律和形成机理:兼论大陆地震成因与预测
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
青藏高原东北部东昆仑、汶川、玉树等强震的同震地表破裂不对称发育,伴随余震有规律地分别向东、南东和北北东方向迁移,很可能是源于恒河盆地流经亚东、当雄、安多、库赛湖、治多、玉树、甘孜、汶川的弧形下地壳"热河"的流速和流向变化形成的,下地壳热流物质正在向云南及邻区汇聚形成下地壳"热海",导致长时间跨季度构造热干旱,其影响超过大气环流的作用。地表破裂不一定受断层控制,震源也不在断层面上,下地壳流动导致中地壳发震并进一步影响上地壳形成同震脆性破裂系统。大陆板内盆山过渡带地震密集,大陆板内地震是在下地壳层流的热动力作用下导致活动地壳分层变形的产物。在大陆盆山耦合、圈层耦合的非线性开放系统中,从大洋底部的软流圈层流进入大陆底部使得地幔软流圈加厚,底辟上升为大陆下地壳流动,为地震活动提供了巨量热能;热软化的下地壳缓慢的韧性流动孕育了大陆板内地震;中地壳韧-脆性剪切带易于积累能量,发生热能与应变能的转化,产生地震,形成震源层;上地壳脆性断层活动和地表破裂是地震释放深部能量的载体和方式之一。地壳稳定性评价的依据应当是地壳的活动性而不是断层的活动性。大陆活动构造区地震活跃期与平静期交替实际上是下地壳地震能量的聚散过程,体现在下地壳热主导的韧性流动构造与上地壳应力主导的脆性破裂构造之间的相互作用。下地壳热软化物质流动过程中流速、流向等突然改变触发地震,并产生共振波。大陆下地壳流层在厚度、温度、粘度、流速、流向上的变化产生一定程度的温度异常、流体异常及与其相关的大气层、电场、磁场、重力场、地球化学场、应力场、应变场、生物场等异常。合理布置天空网、地面网、地下网,综合立体监测有效的地震前兆,系统地开展长期、中期和短临地震预测,能够不断地提高地震预测水平。
Asymmetrical co-seismic surface ruptures and aftershock sequences of East Kunlun,Wenchuan,and Yushu strong earthquake in the northeastern Tibetan Plateau propagated eastward,southeastward and northeastward,respectively.These earthquakes may generally be related to the variation in flow velocity and flow direction of the arc lower crustal "thermal river" that originates from Ganges Basin and flows through Yadong,Damxung,Amdo,Kusai Lake,Zhidoi,Ganzi,Wenchuan toward Yunnan province and its adjacent areas forming a lower crustal "thermal sea",which caused a 10-month mega tectonic drought.The co-seismic surface ruptures did not precisely coincide with faults,and hypocenters did not precisely occur on brittle faults.Lower crustal flow controlled seismic sources in middle crust and then caused brittle fracture system in upper crust.Strong earthquake swarms often occurred on the basin-orogen boundary.Continental intraplate earthquakes were product of stratification deformation of active crust driven by lower crustal laminar flow.In opening non-linear complex system of basin-orogen coupling and different sphere and layer coupling in continent,uprising of a thickened continental mantle asthenosphere diapir flowed laterally from ocean provided huge thermal energy for lower crustal flow and earthquake;slow ductile flow of thermal softening lower crust gestated earthquakes;in the ductile-brittle shear zone of middle crust,it is easy to accumulate energy and the conversion from thermal energy to strain energy occurred there,leading to earthquakes and forming the hypocenter layer;the brittle fault in upper crust and surface rupture only are one of carriers and ways of releasing the deeper crustal energy.The regional crustal stability assessment should be based on the active crust instead of active fault.The abrupt variation in flow velocity and flow direction of lower crust triggered earthquakes causing resonant wave.Alternation of earthquake quiet period and active period actually is the accumulating and releasing process of lower crustal energy,which is exhibited as the interaction between ductile flow tectonics of lower crust and brittle fracture system of upper crust.The variation in thickness,temperature,viscosity,velocity and direction of lower crustal flow layer and "river" causes characteristic thermal anomaly and fluid anomaly,and related anomalies of atmosphere,electricity,magnetism,gravity,geochemistry,stress,strain,and animal.Space-surface-underground monitoring system for valid earthquake precursors will raise the level of strong earthquake prediction.
引文
[1]Li D W,Li X F.Investigation and Practice of Four-di men-sional Dynamic Metallogenic Theory[M].Wuhan:China U-niversity of Geosciences Press,1993:1-28(in Chinese).
    [2]Li D W.The outline of evolution for the Qinghai-TibetTethyan domain since Late Palaeozoic[M]∥Wan T F.An-nual Report of Lithosphere Tectonic and Dynamics OpeningLaboratory.Beijing:Seismological Press,1994:163-169.
    [3]Li D W.New model for the uplift of the Qinghai-Tibet Plat-eau[J].Earth Science:Journal of China University of Geo-sciences,2003,28(6):593-600(in Chinese).
    [4]Li D W.Scientific problems of continental dynamics in theQinghai-Tibet Plateau[J].Geological Science and Technolo-gy Information,2006,25(2):1-10(in Chinese).
    [5]Li D W.Three-stage tectonic evolution and metallogenic evo-lutionin the Qinghai-Tibet Plateau and its adjacent area[J].Earth Science:Journal of China University of Geosciences,2008,33(6):723-742(in Chinese).
    [6]Li D W,Xia Y P,Xu L G.Coupling and formation mecha-nism of continental intraplate basin and orogen:Examplesfrom the Qinghai-Tibet Plateau and adjacent basins[J].Earth Science Frontiers,2009,16(3):110-119(in Chinese).
    [7]Li D W.Temporal-spatial structure of intraplate uplift in theQinghai-Tibet Plateau[J].Acta Geologica Sinica,2010,84(1):105-134.
    [8]Li D W.Continental lower crustal flow:Channel flow andlaminar flow[J].Earth Science Frontiers,2008,15(3):130-139(in Chinese).
    [9]Li D W.On the mechanism and prediction in the intraplateearthquakes:An example from Wenchuan earthquake in Si-chuan Province[J].Geological Science and Technology Infor-mation,2008,27(5):1-6(in Chinese).
    [10]Zhang P Z,Shen Z K,Burgman R,et al.Continuous de-formation of the Tibetan Plateau constrained fromglobal po-sitioning measurements[J].Geology,2004,32(9):809-812.
    [11]Zhou F H,Yao Z X,Liu Z J,et al.The origin and i mplica-tion of the NNE-trending deep negative magnetic anomalyzone in Central Qinghai-Tibet Plateau[J].Geophysical andGeochemical Exploration,2002,26(1):15-19(in Chinese).
    [12]Wei Q R,Li D W,Wang G C,et al.Zircon SHRI MP U-Pbdating and geochemical characteristics of Chabaoma Forma-tion volcanic rocks in northern Tibetan Plateau andits petro-genesis[J].Acta Petrologica Sinica,2007,23(11):2727-2736(in Chinese).
    [13]Li H B,Qi X X,Zhu Y T,et al.Asymmetrical co-seismicsurface rupture in the East Kunlun earthquake(Ms=8.1),Northern Tibetan Plateau,China[J].Acta Geologica Sinica,2004,78(5):633-640(in Chinese).
    [14]Wen X M,Xu X W,Zheng R Z,et al.Average slip-rate andrecent large earthquake ruptures along the Ganzi-Yushu fault[J].Science in China:Series D,2003,33(Suppl):276-288.
    [15]Bai D H,Unsworth MJ,Meju MA,et al.Crustal deforma-tion of the eastern Tibetan plateau revealed by magnetotellu-ric i maging[J].Nature Geoscience,2010,3:358-362.
    [16]Xu X W,Wen X Z,Ye J Q,et al.Ms8.0 Wenchuan earth-quake surface rupture zone andits seismogenic structures[J].Seismology and Geology,2008,30(3):597-624(in Chi-nese).
    [17]Tang H M,Li D W,Hu X L.Faulting characteristics ofWenchuan earthquake and evaluation theory of regional crus-tal stability for engineering[J].Journal of Engineering Geol-ogy,2009,17(2):145-152(in Chinese).
    [18]Luo WX,Li D W,Wang X F.Focal depth and mechanismofintraplate earthquakes in the Qinghai-Tibet Plateau[J].Earth Science:Journal of China University of Geosciences,2008,33(5):618-626(in Chinese).
    [19]Geng Q G.Drought-earthquake relation and medium-rangeprediction of great earthquakes[J].Science China:Series B,1985,28(3):323(in Chinese).
    [20]Qiang Z J,Xu X D,Dian C G.Thermal infrared anomaly:Precursor of i mpending earthquakes[J].Chinese Science Bul-letin,1991,36:319-323.
    [21]Xu X D,Qiang ZJ,Lin C G.Thermal anomaly andtempera-ture increase before i mpending earthquake[J].Chinese Sci-ence Bulletin,1991,36(4):291-294(in Chinese).
    [22]Tronin A,Hayakawa M,Molchanov O A.Thermal IRsatel-lite data applicationfor earthquake researchin Japan and Chi-na[J].Journal of Geodynamics,2002,33:519-534.
    [23]Kang C L,Chen Z W,Chen L Z,et al.Analysis on the sat-ellite infrared anomaly feature before west to Kunlun Moun-tain passMs8.1 earthquake[J].Northwestern SeismologicalJournal,2003,25(1):12-15(in Chinese).
    [24]Zhang Y S,Guo X,Zhong MJ,et al.Wenchuan earth-quake:Brightness temperature changes fromsatelliteinfraredinformation[J].Chinese Science Bulletin,2010,55(18):1917-1924.
    [25]Fu C Y.Known about the earthquake generation[J].Earth-quake Line,1971(8):35-36(in Chinese).
    [26]Bird P.Lateral extrusion of lower crust from under high to-pography,in the isostatic li mit[J].Journal of GeophysicalResearch,1991,96:10275-10286.
    [27]Beaumont C,Jamieson R A,Nguyen M H,et al.Hi malayantectonics explained by extrusion of a low-viscosity crustalchannel coupled to focused surface denudation[J].Nature,2001,414(13):738-742.
    [28]Li D W.The style of continental tectonics and model of conti-nental dynamics[J].Advancein Earth Sciences,1993,8(5):88-93(in Chinese).
    [29]Li D W.On continental tectonics and continental dynamics[J].Earth Science:Journal of China University of Geosci-ences,1995,20(1):19-26(in Chinese).
    [30]Li D W.Some i mportant directions of continental tectonicsand dynamics[J].Earth Science Frontiers,1995,2(2):141-146(in Chinese).
    [31]Ma Z J,Zhang J S,Liu G D,et al.Current state of researchon continental seismogenic layer[J].Seismology and Geolo-gy,1990,12(3):262-264(in Chinese).
    [32]Yang W R,Zeng Z X,Li D W,et al.Three-level tectonicmodel for intraplate earthquakes[J].Earth Science Fron-tiers,2009,16(1):206-217(in Chinese).
    [33]Zhao Y L,Qian F Y.Electrical resistivity anomaly observedin and around the epicentre area prior to the TangshanM7.8earthquake of 1976[J].Acta Geophysica Sinica,1978,21(3):181-190(in Chinese).
    [34]Qian F Y,Zhao Y L,Xu T C,et al.A model of ani mpend-ing-earthquake precursor of geoelectricity triggered by tidalforces[J].Physics of the Earth and Planetary Interiors,1990,62:284-297.
    [35]Zhao Y L,Qian F Y.Geoelectric precursors to strong earth-quakes in China[J].Tectonophysics,1994,233:99-113.
    [1]李德威,李先福.四维动态成矿理论的探索与实践:以西藏罗布莎铬铁矿区为例[M].武汉:中国地质大学出版社,1993:1-28.
    [3]李德威.青藏高原隆升机制新模式[J].地球科学:中国地质大学学报,2003,28(6):593-600.
    [4]李德威.青藏高原大陆动力学的科学问题[J].地质科技情报,2006,25(2):1-10.
    [5]李德威.青藏高原及邻区三阶段构造演化与成矿演化[J].地球科学:中国地质大学学报,2008,33(6):723-742.
    [6]李德威,夏义平,徐礼贵.大陆板内盆山耦合及盆山成因:以青藏高原及周边盆地为例[J].地学前缘,2009,16(3):110-119.
    [8]李德威.大陆下地壳流动:渠流还是层流[J]?地学前缘,2008,15(3):130-139.
    [9]李德威.大陆板内地震的发震机理与地地震预报:以汶川地震为例[J].地质科技情报,2008,27(5):1-6.
    [11]周伏洪,姚正煦,刘振军,等.青藏高原中部北北东向深部负磁异常带的成因及其意义[J].物探与化探,2002,26(1):15-19.
    [12]魏启荣,李德威,王国灿,等.青藏高原北部查保马组火山岩的锆石SHRI MP U-Pb定年和地球化学特点及其成因意义[J].岩石学报,2007,23(11):2727-2736.
    [13]李海兵,戚学祥,朱迎堂,等.2001年东昆仑地震(Ms8.1)不对称的同震地表破裂构造:单侧块体运动为主及青藏高原内部物质向东滑移的证据[J].地质学报,2004,78(5):633-640.
    [14]闻学泽,徐锡伟,郑荣章,等.甘孜—玉树断裂的平均滑动速率与近代大地震破裂[J].中国科学:D辑,2003,33(增刊):199-208.
    [16]徐锡伟,闻学泽,叶建青,等.汶川Ms8.0地震地表破裂带及其发震构造[J].地震地质,2008,30(3):597-624.
    [17]唐辉明,李德威,胡新丽.龙门山断裂带活动特征与工程区域地壳稳定性评价理论[J].工程地质学报,2009,17(2):145-152.
    [18]罗文行,李德威,汪校锋.青藏高原板内地震震源深度分布规律及其成因[J].地球科学:中国地质大学学报,2008,33(5):618-626.
    [19]耿庆国.旱震关系与大地震中期预报[J].中国科学:B辑,1985,28(3):323.
    [20]强祖基,徐秀登,赁常恭.热红外异常:临震前兆[J].科学通报,1990,35(17):1324-1327.
    [21]徐秀登,强祖基,赁常恭.临震热红外异常与地面增温异常[J].科学通报,1991,36(4):291-294.
    [23]康春丽,陈正位,陈立泽,等.昆仑山口西8.1级地震的卫星热红外前兆特征分析[J].西北地震学报,2003,25(1):12-15.
    [24]张元生,郭晓,钟美娇,等.汶川地震卫星热红外亮温变化[J].科学通报,2010,55(10):904-910.
    [25]傅承义.关于地震发生的几点认识[J].地震战线,1971(8):35-36.
    [28]李德威.大陆构造样式及大陆动力学模式初探[J].地球科学进展,1993,8(5):88-93.
    [29]李德威.再论大陆构造与动力学[J].地球科学:中国地质大学学报,1995,20(1):19-26.
    [30]李德威.大陆构造与动力学研究的若干重要方向[J].地学前缘,1995,2(2):141-146.
    [31]马宗晋,张家声,刘国栋,等.大陆多震层研究现状和讨论[J].地震地质,1990,12(3):262-264.
    [32]杨巍然,曾佐勋,李德威,等.板内地震过程的三层次构造模式[J].地学前缘,2009,16(1):206-217.
    [33]赵玉林,钱复业.唐山7.8级强震前震中周围形变电阻率的下降异常[J].地球物理学报,1978,21(3):181-190.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心