高压下华北北缘二辉麻粒岩电导率的研究
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
借助于YJ 3000t紧装式六面顶固体高压设备,在1.0~2.0 GPa、523~1173 K条件下,利用Agilent34401A数字电表和Solartron IS-1260阻抗-增益/相位分析仪,同时使用三种方法:交流阻抗谱法(频率范围0.05~106Hz)、单频交流法(0.1 Hz)和直流法测量了华北北缘二辉麻粒岩的电导率.结果表明:在实验的温度和压力范围内,二辉麻粒岩电导率的变化在2.66×10-5~0.056 S·m~(-1)之间,电导率对压力没有很强的依赖性;随着温度的升高,电导率增大,遵循Arrenhius关系式,其指前因子为8.95~1 7.9 S·m~(-1),活化能为0.569~0.605 eV.对比三种方法获得的电导率数据,发现阻抗谱法测量结果大于单频法测量结果,直流法测得的结果最低,但是,三种方法获得的电导率差值除两个低温点外,绝大多数都很小(Δlgσ<0.20 lg(S/m)).结合现今华北克拉通地热学参数及地壳分层结构,依据实验获得的电导率温度关系建立了电导率-深度剖面.并将其与大地电磁测深获得的地壳电性结构进行了对比,结果表明二辉麻粒岩的电导率与华北北缘的中地壳底部和下地壳底部电导率值的区域相交,再结合高温高压下二辉麻粒岩的弹性波速度剖面与地震折射剖面的对比,认为二辉麻粒岩有可能是组成华北北缘下地壳的岩石之一.
Electrical conductivity of two-pyroxene granulite, collected from north margin of North China craton, was measured at 1.0~2.0 GPa and 523~1173 K by using three different methods at the same time.The three methods are an impedance spectroscopy for a broad frequency range of 0.05 to 10~(-6) Hz, a single lower frequency (0.1 Hz) , and the DC-method.The experiments were carried out in a measurement system of electrical conductivity, which consisted of an YJ-3000t multi-anvil apparatus, a Solartron IS-1260 Impedance/Gain-Phase analyzer, an Agilent 34401A Multimeter, and a computer.The experimental results indicate that within the range of experimental temperature and pressure, the electrical conductivity of two-pyroxene granulite changes from 2.66×10~(-5)S·m~(-1) to 0.056 S·m~(-1) , and hardly has a dependence on the given pressure.With increasing temperature, the electrical conductivity increases.The conductivity-temperature relation follows an Arrhenius behavior.The pre-exponential factor and activation energy of the Arrhenius formula are 8.95~17.9 S·m~(-1) and 0.569~0.605 eV, respectively.The comparison of the results obtained by the three methods indicates that the result measured by the impedance spectroscopy is always higher than that of the 0.1 Hz's and the result determined by the DC-method is always the lowest.Nevertheless the difference among the data points is less than 0.20 lg(S/m) except for two low-temperature points.Based on the experimental results, the regional crust model and the geothermal gradient, we constructed the profiles of conductivity versus depth.The comparison of the calculated results with the electrical structure of this area reveals that the electrical conductivity of two-pyroxene granulite intersects the range of the electrical conductivity of the lower middle crust and the lowermost crust beneath this area.Combining with the conclusion of the in situ seismic velocity measurement and the seismic refraction profile, we can conclude that the two-pyroxene granulite could be a constituent of the lower crust in the northern margin of North China craton.
引文
[1] Lastovickova M.A review of laboratory measurements of the electrical-conductivity of rocks and minerals.Physics of the Earth and Planetary Interiors,1991,66(1-2) :1~11
    [2] Duba A,BolandJ N,Ringwood A E.Electrical-conductivity of pyroxene.Journal of Geology,1973,81(6) :727~735
    [3] Manthilake M A G M,Matsuzaki T,Yoshino T,et al.Electrical conductivity of wadsleyite as a function of temperature and water content.Physics of the Earth and Planetary Interiors,2009,174(1-4) :10~18
    [4] Constable S,Shankland T J,Duba A.The electrical conductivity of an isotropic olivine mantle.Journal of Geophysical Research-Solid Earth,1992,97(B3) :3397~ 3404
    [5] Lastovickova M.Laboratory measurements of electricalconductivity of biotites.Studia Geophysica Et Geodaetica,1991,35(2) :125~129
    [6] Roberts J J,Tyburczy J A.Frequency-dependent electrical properties of dunite as functions of temperature and oxygen fugacity.Physics and Chemistry of Minerals,1993,19(8) :545~561
    [7] Dai L D,Li H P,Liu C G,et al.Experimental measurement of the electrical conductivity of single crystal olivine at high temperature and high pressure under different oxygen fugacities.Progress in Natural Science,2006,16(4) :387~ 393
    [8] Xu Y S,Poe B T,Shankland T J,et al.Electrical conductivity of olivine,wadsleyite,and ringwoodite under upper-mantle conditions.Science,1998,280(5368) :1415~1418
    [9] Xu Y,Shankland T J,Duba A G.Pressure effect on electrical conductivity of mantle olivine.Physics of the Earth and Planetary Interiors,2000,118(1-2) :149~161
    [10] Huang X G,Bai W M,Xu Y S,et al.Influence of hydrogen on electrical conductivity of wadsleyite and ringwoodite with its geodynamics implications.Acta Petrologica Sinica,2005,21(6) :1743~1748
    [11] Romano C,Poe B T,Tyburczy J,et al.Electrical conductivity of hydrous wadsleyite.European Journal of Mineralogy,2009. 21(3) :615~622
    [12] Yoshino T,Manthilake G,Matsuzaki T,et al.Dry mantle transition zone inferred from the conductivity of wadsleyite and ringwoodite.Nature,2008,451(7176) :326~329
    [13] Huang X G,Xu Y S,Karato S I.Water content in the transition zone from electrical conductivity of wadsleyite and ringwoodite.Nature,2005,434(7034) :746~749
    [14] Glover P W J,Vine F J.Electrical-conductivity of carbonbearing granulite at raised temperatures and pressures.Nature,1992,360(6406) :723~726
    [15] Freund F.On the electrical conductivity structure of the stable continental crust.Journal of Geodynamics,2003,35(3) :353~388
    [16] Schilling F R,Partzsch G M,Brasse H,et al.Partial melting below the magmatic arc in the central Andes deduced from geoelectromagnetic field experiments and laboratory data.Physics of the Earth and Planetary Interiors,1997, 103(1-2) :17~31
    [17] Glover P W J,Vine F J.Beyond ktb-electrical-conductivity of the deep continental-crust.Surveys in Geophysics,1995,16(1) :5~36
    [18] 黄晓葛,白武明,周文戈.高温高压下黑云斜长片麻岩的电性研究.高压物理学报,2008,22(3) :237~244 Huang X G,Bai W M,Zhou W G.Experimental study on electrical conductivity of biotite-and plagioclase-bearing gneiss at high temperature and high pressure.Chinese Journal of High Pressure Physics.(in Chinese),2008,22(3) :237~244
    [19] Fuji-ta K,Katsura T,Tainosho Y.Electrical conductivity measurement of granulite under mid-to lower crustal pressure-temperature conditions.Geophysical Journal International,2004,157(1) :79~86
    [20] Rudnick R L,Fountain D M.Nature and composition of the continental-crust-a lower crustal perspective.Reviews of Geophysics,1995,33(3) :267~309
    [21] 翟明国,刘文军.麻粒岩的形成及其对大陆地壳演化的贡献.岩石学报,2001,17(1) :28~38 Zhai M G,Liu W J.The formation of granulite and its contribution to evolution of the continental crust.Acta Petrologica Sinica.(in Chinese),2001,17(1) :28~38
    [22] Kern H,Gao S,Liu Q S.Seismic properties and densities of middle and lower crustal rocks exposed along the North China Geoscience Transect.Earth and Planetary Science Letters,1996,139(3-4) :439~455
    [23] 谢鸿森,张月明,徐惠刚等.高温超高压下测量岩石矿物弹性波速的新方法及其地学意义.中国科学(B辑),1993,36(10) :1276~1280 Xie H S,Zhang Y M,Xu H G,et al.A new method of measurement for elastic wave velocities in minerals and rocks at high temperature and high pressure and its significance.Science in China(Ser.B),1993,36(10) :1276~1280
    [24] Roberts J J,Tyburczy J A.Frequency-dependent electricalproperties of minerals and partial-melts.Surveys in Geophysics,1994,15(2) :239~262
    [25] Huebner J S,Dillenburg R G.Impedance spectra of hot,dry silicate minerals and rock-qualitative interpretation of spectra.American Mineralogist,1995,80(1-2) :46~64
    [26] 王多君,李和平,刘丛强等.高温高压下辉长岩的电导率实验研究.矿物学报,2002,22(1) :81~84 Wang D J,Li H P,Liu C Q,et al.The electrical conductivity of at high temperture and pressure.Acta Mineralogica Sinica(in Chinese),2002,22(1) :81~84
    [27] 白利平,杜建国,刘巍等.高温高压下辉长岩纵波速度与电导率实验研究.中国科学(D辑),2002,32(11) :959~968 Bai L P,Du J G,Liu W,et al.The experimental studies on electrical conductivities and P-wave velocities of gabbro at high pressure and high temperature.Science in China,Ser.D.(in Chinese),2002,32(11) :959~968
    [28] Fuji ta K,Katsura T,Matsuzaki T,et al.Electrical conductivity measurement of gneiss under mid-to lower crustal P T conditions.Tectonophysics,2007,434(1-4) :93~101
    [29] Partzsch G M,Schilling F R,Arndt J.The influence of partial melting on the electrical behavior of crustal rocks:laboratory examinations,model calculations and geological interpretations.Tectonophysics,2000,317(3-4) :189~203
    [30] Nover G.Electrical properties of crustal and mantle rocks-A review of laboratory measurements and their explanation.Surveys in Geophysics,2005,26(5) :593~651
    [31] Nover G,Heikamp S,Kontny A,et al.The effect of pressure on the electrical-conductivity of Ktb Rocks.Surveys in Geophysics,1995,16(1) :63~81
    [32] 朱茂旭,谢鸿森.地球深部物质电学性质实验研究.地球科学进展,1998,13(5) :438~446 Zhu M X,Xie H S.Experimental researches of electrical characteristics on earth's deep interior materials.Advance in Earth Science(in Chinese),1998,13(5) :438~446
    [33] Duba A,Heard H C,Schock R N.Electrical-conductivity of olivine at high-pressure and under controlled oxygen fugacity.Journal of Geophysical Research,1974,79(11) :1667~ 1673
    [34] 代立东,李和平,刘丛强等.高温高压下二辉橄榄岩的阻抗谱实验研究.高压物理学报,2005,19(1) :29~34 Dai L D,Li H P,Liu C Q,et al.Experimental study on impedance spectra of iherzolite under high temperature and high pressure.Chinese Journal of High Pressure Physics(in Chinese),2005,19(1) :29~34
    [35] 魏文博,金胜,叶高峰等.华北地区大地电磁测深及岩石圈厚度讨论.中国地质,2006,33(4) :762~772 Wei W B,Jin S,Ye G F,et al.MT sounding and lithosphere thickness in North China.Geology in China(in Chinese),2006,33(4) :762~772
    [36] 魏文博,谭捍东,金胜等.华北中部岩石圈电性结构--应县-商河剖面大地电磁测深研究.地球科学:中国地质大学学报,2002. 27(5) :645~650 Wei W B,Tan H D,Jin S,et al.Conductivity structure of lithosphere in central north China:Magnetotelluric study of Yingxian Shanghe profile.Earth Science-Journal of China University of Geosciences(in Chinese).2002,27(5) :645~ 650
    [37] Karato S,Dai L D.Comments on “Electrical conductivity of wadsleyite as a function of temperature and water content” by Manthilake et al.Physics of the Earth and Planetary Interiors,2009,74(1-4) :19~21
    [38] Roberts J J,Tyburczy J A.Frequency dependent electrical properties of polycrystalline olivine compacts.Journal of Geophysical Research-Solid Earth,1991,96(B10) :16205~16222
    [39] 代立东,李和平,刘丛强等.高温高压和控制氧逸度条件下透辉石电导率的各向异性实验研究.岩石学报,2005,21(6) : 1737~1742 Dai LD,Li H P,Liu C Q,et al.In situ controlof oxygen fugacity experimental study on the crystallograghic anisotropy of the electrical conductivities of diopside at high temperature and high pressure.Acta Petrologica Sinica(in Chinese),2005,1(6) :1737~1742
    [40] Dai L,Karato S I.Electrical conductivity of wadsleyite at high temperatures and high pressures.Earth and Planetary Science Letters,2009,287(1-2) :277~283
    [41] Yoshino T,Katsura T.Reply to Comments on “ Electrical conductivity of wadsleyite as a function of temperature and water content” by Manthilake et al.Discussion.Physics of the Earth and Planetary Interiors,2009,174(1-4) :22~23
    [42] 赵国泽,刘国栋.张北-尚义地震及其邻区地壳上地幔结构. 地震地质,1998,20(2) :155~156 Zhao G Z,Liu G D.The structure of the crust and uppermantle for the Zhangbei-Shangyi seismic area and its neighbouring region.Seismology and Geology(in Chinese),1998,20(2) :155~156
    [43] 臧绍先,刘永刚,宁杰远.华北地区岩石圈热结构的研究.地球物理学报,2002,45(1) :56~66 Zang S X,Liu Y G,Ning J Y.Thermal structure of the lithosphere in North China.Chinese J.Geophys.(in Chinese),2002,45(1) :56~66
    [44] 迟清华,鄢明才.华北地台岩石放射性元素与现代大陆岩石圈热结构和温度分布.地球物理学报,1998,41(1) :38~48 Chi Q H,Yan M C.Radioactive elements of rocks in North China platform and the thermal structure and temperature distribution of the modern continental lithosphere.Chinese J.Geophys.(Acta Geophysica Sinica)(in Chinese),1998,41(1) :38~48
    [45] Ma X Y,Liu C Q,Liu G D.The geoscience transect from Xiangshui,Jiangsu province to Mandal,Inner mongolia.Acta Geologica Sinica,1992,5(1) :1~21

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心