波阻抗反演在南海北部神狐海域天然气水合物勘探中的应用
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
针对神狐海域的地质构造和天然气水合物的赋存特征,以重点测线三维地震数据为基础,分析讨论了基于宽带约束的模拟退火波阻抗反演方法、流程和关键技术问题,定量获得了含天然气水合物沉积物的波阻抗特征。结果表明:基于宽带约束的模拟退火波阻抗反演数据具有较高的有效垂向分辨率和较好的横向连续性;神狐海域高波阻抗异常反映了含天然气水合物沉积层,而不连续异常低波阻抗层是水合物层之下游离气的表现,这与钻探结果吻合。由此可见,基于宽带约束的模拟退火波阻抗反演可为天然气水合物层识别和预测、勘探目标圈定、钻探井位选择提供重要依据。
Impedance inversion is one of the means for oil-gas reservoir prediction.In view of the complicated geology and formation-distribution features of gas hydrate,based on the 3D seismic data collected by Guangzhou Marine Geological Survey,the method,process and key technology of broadband-based simulated annealing impedance inversion had been discussed,and the impedance data for the hydrate-bearing sediments of Shenhu area,Northern South China Sea were revealed in this paper.It is showed that the results of broadband-based simulated annealing impedance inversion are of high vertical valid resolution and horizontal continuity.The very high impedance layer shows the hydrate-bearing sediments and relatively lower one corresponds with the free gas in Shenhu area,which coincide with the gas hydrate drilling results.Therefore,the broadband-based simulated annealing impedance inversion may provide one of basis for gas hydrate recognition and prediction,exploration target confirmation and drilling site selection.
引文
[1]宋海斌,张关泉.层状介质弹性参数反演问题研究综述[J].地球物理学进展,1998,13(4):67-78.
    [2]Huuse M,Feary D A.Seismic inversion for acoustic impedanceand porosity of Cenozoic cool-water carbonates on the upper conti-nental slope of the Great Australian Bight[J].Marine Geology,2005,215(3/4):123-134.
    [3]Nie R,Yue J H,Deng S Q,et al.Wave impedance inversion incoalfield based on immune genetic algorithm[J].Procedia Earthand Planetary Science,2009,1(1):929-935.
    [4]Taylor MH,Dillon W P,Pecher I A.Trapping and migration ofmethane associated with the gas hydrate stability zone at the BlakeRidge Diapir:newinsights from seismic data[J].Marine Geolo-gy,2000,164(1/2):79-89.
    [5]Lu S,McMechan G A.Elastic impedance inversion of multi-channel seismic data fromunconsolidated sediments containing gashydrate and free gas[J].Geophysics,2004,69(1):164-179.
    [6]Singer B S,Fainberg E B.Fast imaging and inversion of on andoff shore electromagnetic data[J].Tectonophysics,2007,445(1/2):81-97.
    [7]Mahapatra M,Mahapatra S.Seismic diffraction tomography tech-nique using very fast simulated annealing method for delineatingsmall subsurface features[J].Journal of Applied Geophysics,2009,67(2):125-129.
    [8]W啨ber Z.Seismic traveltime tomography:a simulated annealingapproach[J].Physics of the Earth and Planetary Interiors,2000,119(1/2):149-159.
    [9]张宏兵,杨长春.正则参数控制下的波阻抗约束反演[J].地球物理学报,2003,46(6):827-834.
    [10]吴能友,杨胜雄,王宏斌,等.南海北部陆坡神狐海域天然气水合物成藏的流体运移体系[J].地球物理学报,2009,52(6):1641-1650.
    [11]石万忠,宋志峰,王晓龙,等.珠江口盆地白云凹陷底辟构造类型及其成因[J].地球科学:中国地质大学学报,2009,34(5):778-784.
    [12]孙龙涛,周蒂,陈长民,等.珠江口盆地白云凹陷断裂构造特征及其活动期次[J].热带海洋学报,2008,27(2):25-31.
    [13]Taylor B,Hayes D E.The tectonic evolution of the South ChinaBasin[M]//The Tectonic and Geologic Evolution of SoutheastAsian Seas and Islands.Washington:American GeophysicalUnion,1980:89-104.
    [14]Pautot G,Rangin C,Briais A,et al.Spreading direction in thecentral South China Sea[J].Nature,1986,321:150-154.
    [15]姚伯初.南海的天然气水合物矿藏[J].热带海洋学报,2001,20(2):20-28.
    [16]姚伯初,吴能友.天然气水合物——石油天然气的未来替代能源[J].地学前缘,2005,12(1):225-233.
    [17]Kvenvolden K A,McDonald T J.Gas hydrates of the MiddleAmerica Trench—Deep Sea Drilling Project Leg84[R]//Ini-tial Reports of the Deep Sea Drilling Project.Washington:Gov-ernment Printing Office,1985:667-682.
    [18]梁劲,王宏斌,郭依群.南海北部陆坡天然气水合物的地震速度研究[J].现代地质,2006,20(1):123-129.
    [19]宋海斌,耿建华,Wang HK,等.南海北部东沙海域天然气水合物的初步研究[J].地球物理学报,2001,44(5):687-695.
    [20]LeBlanc C,Louden K,Mosher D.Gas hydrates off EasternCanada:Velocity models from wide-angle seismic profiles on theScotian Slope[J].Marine and Petroleum Geology,2007,24(5):321-335.
    [21]吴志强,文丽,童思友,等.海域天然气水合物的地震研究进展[J].地球物理学进展,2007,22(1):218-227.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心