黄土滑坡流滑机理的试验研究
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
饱和黄土的稳态强度(残余强度)是黄土边坡是否发生流滑的关键因素,为了评价饱和黄土的残余强度就需要很好的了解饱和黄土的不排水剪切性能。通过对饱和黄土的固结不排水三轴试验研究了饱和黄土的稳态强度理论。试验研究发现饱和黄土有两种典型的不排水剪切特性:稳态特性、准稳态特性。且大多数情况下饱和黄土总表现为稳态特性,只有疏松的黄土表现出准稳态特性;根据试验结果得出了黄土的稳态线与稳态强度线,可以用来分析黄土边坡的流滑机理。探讨了描述黄土稳态性质的参数内摩擦角和粘聚力的物理含义;比较了由地震引发的滑坡与灌溉诱发的滑坡流滑机理的差异,对于地震引起的黄土滑坡土体残余(稳态)强度起决定性作用,而对于灌溉引起的黄土滑坡土体的峰值强度才是关键因素。
The steady state strength(i.e.,residual strength) plays a major role in the flow sliding mechanism of loess landslides.The evaluation of residual strength requires a better understanding of undrained saturated loess behavior.The steady strength of saturated loess is examined using stress-controlled undrained consolidation triaxial test.Two typical stress-strain behaviors of saturated loess are steady state behavior and quasi-steady state.The majority situations exhibit steady state behavior.Only loose loess exhibits quasi-steady state behavior.According to the test results,steady state line and steady state strength line of saturated loess are established.These lines can be used to analyze the mechanism of flow slide.It can use the angle of internal friction and cohesion to describe the steady state behavior of saturated loess.The meaning of these parameters is discussed.The difference of irrigation-induced landslides of loess and seismically-induced landslides of loess is analyzed.If the landslides induced by earthquake,the steady state strength(residual strength) plays a major role.If the landslides induced by irrigation,the peak strength plays a major role.
引文
[1]Seed H.B.Landslides during earthquakes due to soil liquefaction.Journal Soil Mechanics Foundations Division,ASCE,1966,94(5):1055~1122.
    [2]Dexuan Zhang,Gonghui Wang.Study of the 1920 Haiyuan earth-quake-induced landslides in loess.Engineering Geology,doi:10.1016/j.enggeo.2007.07.007,(94):76~88.
    [3]Dexuan Zhang,Gonghui Wang,Chunyong Luo,Jun Chen.Yungxi Zhou.A rapid loess flowslide triggered by irrigation inChina.Landslides.doi:10.1007/s10346-008-0135-2
    [4]Casagrande A.Liquefaction and cyclic deformation of sands.acritical review[A].Proc of the Fifth Pan American Conf.on SoilMechanics and Foundations Engineering,Buens Aires,Argenti-na,1975,5,79~133.
    [5]Casagrande A.Characteristics of cohesionless soils affecting thestability of slopes and earth fills[A].Journal of Boston Society ofCivil Engineerings,Jan.1936.contributions to soil mechanics[M].1926~1940,BSCE.1940,257~276.
    [6]Poulos S J.The steady state of deformation[J].Journal of Geotech-nical Engineering Division,ASCE,1981,107(5):553~562
    [7]Ishihara K.Liquefaction and flow failure during earthquake[J].Geotechnique,1993,43(3).351~415.
    [8]Castro Q,Poulos S J.Factors affecting liquefaction and cyclicmobility[J].Journal of Geotechnical Engineering Division,ASCE,1977,103(6):501~516.
    [9]Poulos S J,Castro G,France J W.Liquefaction evaluation proce-dure[J].Journal of Geotechnical Engineering Division,ASCE,1985,111(6):772~792.
    [10]赵成刚,尤昌龙.饱和砂土液化与稳态强度[J].土木工程学报,2001,34(3).90~96.Zhao Chenggang,et al..Liquefaction and steady state strength[J].China Civil Engineering Journal,2001,34(3):90~96.
    [11]余湘娟,姜朴,魏松.砂土的稳态强度试验研究[J].河海大学学报,50~54,2001.29(1):50~54.Yu Xiangjuan,et al..Experimental rsearch on the steadystrength of sandy soils[J].Journal of Hehai University,2001,29(1):50~54.
    [12]高军伟,王洪瑾,周克骥,等.用稳态理论研究尾矿坝的抗震稳定性[A].第四届全国土动力学学术会议论文集[C].杭州:[s.n.],1994,43~46.Gao Junwei,et al..Seismic slope stability analysis of tailing damusing steady state[A].In:Proceedings of the 4th Chinese SoilDynamic Mechanics[C].Hangzhou:[s.n],1994,43~46.
    [13]王媛,姜朴,朱俊高,等.松粉砂地基地震后堤坝稳定性分析[J].水利学报,2000,(11):60~69.Wang Yuan,Jiang Pa,Zhu Jungao,et al..Post-earthquakestability analysis of dike built on silty sand foundation[J].Jour-nal of Hydraulic Engineering,2000,(11):60~69.
    [14]Zhang H M,Vinod K G.Quasi-steady state:A real behavior[J].J.Can.Geotech,1997,34(5):749~761.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心