琼东南盆地多边形断层在流体运移和天然气水合物成藏中的作用
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
多边形断层是由未固结沉积物脱水使得体积收缩而在平面上呈现多边形形状,且具有微小断距、分布密集的张性断层。在琼东南盆地深水区的中新世—上新世地层中,利用三维地震相干切片可以发现小规模流体运移通道——多边形断层。同样在二维高分辨率地震剖面上也能发现多边形断层、底辟和同相轴下拉的管状构造,距海底双程走时250ms和300ms位置存在强的似海底反射层(Bottom Simulating Reflector,简称BSR)。利用约束稀疏脉冲反演和地震属性分析表明,多边形断层上部地层的管状构造和模糊反射区为低声波阻抗异常和低频率异常,BSR上为高声波阻抗和高频率异常。多边形断层、管状和底辟构造破坏了琼东南盆地裂后热沉降阶段巨厚的泥岩地层的封闭性,使大量流体垂直和近似垂直向上运移,为天然气水合物形成提供了充足气源。
The dehydration of unconsolidated sediments made the sediments shrink,then the polygonal faults were formed,they were the densely distributed tensional faults with small fault throws.In the Miocene to Pliocene strata in the deep water zone of Southeast Hainan Basin,the small-scale fluid migration channels which actually were the polygonal faults were found on the 2-D high resolution seismic coherence slices.Meanwhile the polygonal faults,diapir and event pulldown tubular structures were found on the 2-D high resolution seismic sections,and the strong BSR (Bottom Simulating Reflector) exist 250ms to 300ms below the sea floor.The CSSI (Constrained Sparse Spike Inversion) and seismic attribute analysis show that tubular structures and fuzzy reflection zone in the strata above the polygonal faults have low impedance anomaly and low frequency anomaly,while the BSR shows high impedance anomaly and high frequency anomaly.The polygonal faults,diapir and event pulldown tubular structures broke the closure of the extremely thick mudstone strata during the post-fault thermal subsidence period in Southeast Hainan Basin,the structures made a large amount of fluid migrate upwards vertically or nearly vertically,providing sufficient gas source for the gas hydrate formation.
引文
[1]Cartwright J A.Episodic basin-wide hydrofracturing of overpressured Early Cenozoic mudrock sequences in the North Sea Basin.Marine and Petroleum Geol-ogy,1994,11(5):587~607
    [2]Cartwright J Aand Lonergan.Volumetric contraction during the compaction of mudrocks:a mechanismfor the development of regional-scale polygonal fault sys-tems.Basin Research,1996,8:183~193
    [3]Hansen D M,Shi meldb J W,Williamsonb M A,Andersena H L.Development of a major polygonal fault systemin Upper Cretaceous chalk and Cenozoic mudrocks of the Sable Subbasin,Canadian Atlantic margin.Marine and Petroleum Geology,2004,21:1205~1219
    [4]Gay A,Lopez M,Cochonat P and Sermondadaz G.Polygonal faults-furrows system related to early sta-ges of compaction-upper Miocene to recent sedi ments of the Lower Congo Basin.Basin Research,2004,16:101~116
    [5]Gay A,Lopez M,Berndt C,Sranne M.Geological controls onfocused fluid flowassociated with seafloor seeps in the Lower Congo Basin.Marine Geology,2007,244:68~92
    [6]吴时国,孙启良等.琼东南盆地深水区多边形断层的发现及其油气意义.石油学报,2009,30(1):22~26
    [7]Dewhursta D N.Cartwright J A,Lonergan L.The development of polygonal fault systems by syneresis of colloidal sedi ments.Marine and Petroleum Geolo-gy,1999,16:793~810
    [8]Victor P,Moretti I.Polygonal fault system and channel boudinage:3D analysis of multidirectional ex-tension in analogue sandbox experi ments.Marine and Petroleum Geology,2006,23:777~789
    [9]Paola N D,Collettini C,Trippetta F,Barchi M R,Minelli G.A mechanical model for complexfault pat-terns induced by evaporate dehydration and cyclic changes in fluid pressure.Journal of Structural Ge-ology,2007,29:1573~1584
    [10]Heggland R.Gas seepage as an indicator of deeper prospective reservoirs:a study base on exploration3D seismic data.Marine and Petroleum Geology,1998,15:1~19
    [11]陈多福,冯东等.海底天然气渗漏系统演化特征及对形成水合物的影响.沉积学报,2005,23(2):323~328
    [12]Leythaeuser D,Schwark L and Keuser C.Geological conditions and geochemical effects of secondary petro-leum migration and accumulation.Marine and Petro-leum Geology,2000,17:857~859
    [13]陈多福,陈先沛等.冷泉流体沉积碳酸盐岩的地质地球化学特征.沉积学报,2002,20(1):34~40
    [14]李纯泉,陈红汉,张树林.琼东南盆地压力场及其演化特征.新疆石油地质,2002,23(5):389~391
    [15]何家雄,陈胜红等.南海北部边缘莺—琼盆地油气资源前景及有利勘探方向分析.天然气地球科学,2008,19(4):492~498
    [16]王秀娟,吴时国,董冬冬等.琼东南盆地气烟囱构造的特点及其与天然气水合物的关系.海洋地质与第四纪地质,28(3):75~78
    [17]Bahorich and Farmer.3-D seismic discontinuity for faults and stratigraphic features:The coherence cube.The Leading Edge,1995,14:1053~1058
    [18]Berndt C.Focused fluid flow in passive continental margins.Philos.Trans R Soc A,2005,363:2855~2871
    [19]Brown A.Evaluation of possible gas microseepage mechanisms.AAPG Bull,2000,84:1775~1789
    [20]Schroot B M,Klaver G T,Schttenhel m R T E.Surface and subsurface expressions of gas seepage to the seabed-examples fromthe Southern North Sea.Marine Petroleum Geology,2005,22:449~515
    [21]Cartwright J A,Dewhurst D.Layer-bound compac-tion faults in fine-grained sedi ments.Geo Soc Am Bulletin,1998,91(8):1242~1257
    [22]Hustoft S,Mienert J,Bnz S,NouzH.High-resolu-tion3D seismic data indicate focused fluid migration pathways above polygonal fault systems of the mid-Norwegian margin.Marine Geology,2007,245:89~106
    [23]Hansen D M,Cartwright J.The three-di mensional geometry and growth of forced folds above saucer-shapedigneous sills.Journal of Structural Geology,2006,28:1520~1535
    [24]Bunz S,Mienert J,Berndt C.Geological controls on the storegga gas hydrate system of the mid-Nor-weigian continental margin.Earth and Planetary Science Letters,2003,209:291~307
    [25]王大伟,吴时国等.琼东南盆地第四纪块体搬运体系的地震特征分析.海洋地质与第四纪地质,2009,29(3):69~74
    [26]祝有海,吴必豪等.南海沉积物中烃类气体(酸解烃)特征及其成因与来源.现代地质,2008,22(3):407~414
    [27]陈忠,颜文等.南海北部大陆坡冷泉碳酸盐结核的发现:海底天然气渗漏活动的新证据.科学通报,2006,51(9):1065~1072
    [28]Xu N,Wu SG,Shi BQ,Lu B,Xue LQ,Wang XJ,Jia Y.Gas hydrate associated with mud diapirs in south-ern Okinawa Trough.Mar Petrol Geol,2009,26:143~148
    [29]Milkov A V.Worldwide distribution of submarine mud volcanoes and associated gas hydrates.Marine Geology,2000,167:29~42
    [30]Ginsburg G D,Milkov A V,Soloviev V A,et al.Gas hydrate accumulation at the Haakon Mosbymud volcano.Geo-Marine Letters,1999,19:57~67
    [31]Cartwright J,Huuse M,Aplin A.Seal bypass sys-tems.AAPG Bulletin,2007,91(8):1141~1166
    [32]王宏斌,张光学,梁劲等.南海北部陆坡构造坡折带中的天然气水合物.沉积学报,2008,26(2):283~293
    [33]张光学,祝有海,梁金强等.构造控制型天然气水合物成藏及其特征.现代地质,2006,20(4):605~612
    [34]刘学伟,李敏锋,张聿文等.天然气水合物地震响应研究——中国南海HD152测线应用实例.现代地质,2004,18(1):33~38
    [35]王宏斌,黄永样等.南海北部陆坡坳隆断裂带中水合物赋存的温压场环境.现代地质,2006,20(1):103~108
    [36]Wu S G,Wang X J,How Kin Wong,Guangxue Zhang.Low-amplitude BSRs and gas hydrate concen-tration on the northern margin of the South China Sea.Mar Geophys Res,2007,28(2):127~138
    [37]Dickens G R,Quinby-hunt M S.Methane hydrate stability in seawater.Geophys Res Lett,1994,21:2115~2118
    [38]Shi X B,Qiu X L,Xia K Y,Zhou D.Characteristics of surface heatflowin the South China Sea.Journal of Asian Earth Sciences,2003,22:265~277
    [39]Hyndman RD,Davis E.A mechanismfor the forma-tion of methane hydrate and seafloor bottom si mula-ting reflectors by vertical fluid expulsion.J Geophys Res,1992,97(B5):7025~7041
    [40]Singh SC,Minshull TA,Spence GD.Velocity struc-ture of a gas hydrate reflector.Science,1993,260:204~207
    [41]Lu S,Mc Mechan GA.Esti mation of gas hydrate and free gas saturation,concentration,and distribution fromseismic data.Geophysics,2002,67:582~593
    [42]Wood W,Ruppel C.Seismic and thermal investiga-tions of hydrate bearing sedi ments on the Blake Ridge Crest:a synthesis of ODP Leg164results.Proc.O-cean Drill.Program.Final Rep,2000,164:253~264
    [43]Holbrook W S,Gorman A R,Hornbach M et al.Seismic detection of marine methane hydrate.The Leading Edge,2002,21:686~689

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心