强震水氡前兆场异常特征及其物理解释
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
研究了岩石中微裂隙的产生与地下水氡浓度变化的关系以及孕震过程中微裂隙时空变化图像,揭示了水氡前兆场的时空变化特征及其物理机制。结果表明,孕震过程中岩石微破裂的生长是导致地下水氡含量升高及地震前出现水氡异常的原因;震源区及附近地区的膨胀和微破裂最早出现,并最为发育和集中,因此水氡异常也最早出现,也最为集中;孕震过程中微破裂增加,导致地下水氡含量升高,水氡趋势异常以趋势性升高为主。
Based on the study of relationship between micro-fissure generation in rock and radon concentration in groundwater,as well as the micro-fissure spatial-temporal changing image in the process of earthquake preparation,the spatial-temporal characteristics of radon precursory field and its physical mechanism are exposed.The results show that the augment of radon content in groundwater and radon anomalies before earthquake are caused by micro-fissure generation in rock in the process of earthquake preparation.Radon anomalies first emerges and mainly focus in the source and adjacent region because dilatancy and micro-fissure first emerge and concentrated also in this region.Increased micro-fissure produces increasing content of radon in the groundwater,so the tendency anomaly of radon exhibits mainly a rising tendency.
引文
[1]Ian D,Fritz P,et al.Environmental Isotopes in Hydrogeology[M].New York:Lewis,1997.241.
    [2]李宣瑚.唐山地震前京津地区水氡异常场的某些特征[J].地震地质,1982,4(1):57-61.
    [3]王长岭,陶淑芬,张世琴,等.强震水化学前兆场特征[J].西北地震学报,1996,18(1):1-7.
    [4]王长岭,张慧,张佩山,等.1990年共和7.0级地震水化学前兆场特征[J].西北地震学报,1999,21(1):1-6.
    [5]张慧,王长岭,等.大震水化学参量“场兆”与“源兆”判别指标的研究[J].地震,1999,19(2):155-160.
    [6]罗光伟,石锡忠,等.岩石标本受压时氡和钍射气量的实验结果[J].地震学报,1980,2(2):198-204.
    [7]Rudnicki J W,Rice J R.Conditions for the localization of de-formation in pressure-sensitive dilatant materials[J].Mech.Phys.solids,1975,23:371-394.
    [8]张慧,梁子斌,等.坚固体孕震模式下地下流体异常时空演化的数值模拟[J].地震学报,2000,22(2):176-182.
    [9]梅世蓉.地震前兆场物理模式与前兆时空分布机制研究(一)———坚固体模式的由来与证据[J].地震学报,1995,17(3):69-73.
    [10]张炜,王吉易,鄂秀满,等.水文地球化学预报地震的原理与方法[M].北京:教育科学出版社.36-38,265.
    [11]A H苏尔坦霍贾耶夫,Bг蒂明斯基,AИ斯皮里顿诺夫,等著.蔡祖煌,石慧馨译.1983.放射性气体[M].北京:地震出版社,1983.75-95.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心