远离平衡相边界的柯石英形成机制及板块折返假说的物理基础
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
本文从热力学、物理学、物质结构和高压高温相变的角度对板块俯冲—折返假说的物理基础进行了分析讨论。在实际不均匀固体地球高压高温热力学体系中,地表柯石英超高压变质的非平衡态形成模式比平衡态形成模式有更大的普遍性、多样性;"静态流体地球"模型和静岩压力与深度换算公式,对其中的非平衡态体系,和地表中可能存在的局域准静水压平衡态体系,都不适用。把压力直接换算成地球深度,断言地表矿物柯石英就是产生于上地幔的稳定相的结论,以及回避俯冲原动力,把地表柯石英和金刚石超高压变质物的存在与深俯冲之间划上恒等号,缺乏科学根据。实际不均匀固体地球是一个天然的高压高温体系,为了保存高压高温相柯石英,岩石圈内板块折返冷却速率应与实验室中所进行的保压淬火临界速率具有可比性。从实验室的高压高温相变规律看,如此极端缓慢的板块折返抬升冷却速率很难保持住柯石英。有关影响折返过程保存柯石英的四个重要因素还存在很多矛盾问题。物质中原子扩散和化学反应时间通常落在μs~m s范围,而建立平衡时间在m in~102h之间。在由超高压变质岩的同位素定年法和扩散动力学冷却速率法所得构造变质过程的时间内,己有极其充足的时间在几十千米的有限尺度中,进行扩散反应、产物变质,乃至于建立同位素平衡。由于波速异常成因存在的多解性,板块俯冲—折返通道(轨迹),不应仅由地震层析波速异常图来确定。板块俯冲与折返运动的变化应遵循能量和质量守恒定律,在P—T—t轨迹(通道)中应留下数量较多的俯冲—折返过程陆壳岩石、地幔物质的一次相变或二次相变等产物。回顾板块俯冲—折返假说本身的发展过程,最关键的一步,是忽视了固体地球物质的成分、应力等局部不均匀性所造成的局部高压微区和其它非平衡热力学因素影响等事实,沿用传统的静流体模型及其压力—深度换算公式。从物理基础看,板块深俯冲快折返的"壮观地质事件"的猜想,尚需更多更科学的证据去证实。
In the present paper,the physical foundation of the hypothesis of plate subduction—exhumation in the Earth has been analyzed and discussed in the light of thermodynamics,physics,matter-structure and high-temperature high-pressure phase-transformation.For the non-equilibrium high-temperature high-pressure system of the heterogeneous solid Earth,the non-equilibrium state formation modes for the ultrahigh-pressure metamorphism of coesite in the Earth's crust are more greater universality and diversity than the equilibrium state formation mode which should not be assumed to be the only one.The mode of static fluid Earth and conversion formula of litho-static pressure into depth are valid no longer for the real heterogeneous solid Earth including not only the non-equilibrium state,but also the equilibrium state existing possibly in some localized regions with stable hydrostatic,quasi-hydrostatic pressure in the Earth's crust.Chopin(1984) has favoured the idea that coesite grew under nearly static(hydrostatic) pressure condition which belonged an equilibrium thermodynamics growth mode,he has opened a coesite ultrahigh pressure metamorphic study of its kind.However,it is lacking in scientific evidence that the subsequent use of conversion formula of litho-static pressure into depth,made the formation pressure ≥2.8GPa of natural coesite translate into 100km directly;and further asserted that the obtained coesite in the Earth's crust is a stable phase produced from the Earth's mantle.For the actual inhomogeneity solid earth,the driving force of plate deep subduction already was not the issue of overcoming fluid buoyancy which is driving low-density continental crust rocks to insert into high-density crust—mantle rock,but should resolve the problem of low-density continental crust rocks to penetrate into solid crust—mantle rock with high-density.It is necessary to have a giant,abnormal,and rare driving force for that.From the point of view of physics,it is very hard to subduct solid continental crust rock into solid crust—mantle rock.Chopin firstly evaded the original driving force,and further,drew a constant equal sign without scientific basis between the two events of the coesite and diamond ultrahigh pressure metamorphic rock found in the Earth's crust and the stable phase produced in the mantle or the deep subduction,and then again rose up to a "paradigm" height that had misled need no original driving force of research.Since the introduction of the hypothesis of plate subduction—exhumation so far,the original driving force of plate subduction—exhumation has always not been resolved.Uneven solid Earth is a natural high-temperature high-pressure system,in order to preserve the coesite,a high-temperature high-pressure phase of quartz,the rapid cooling rate of plate is requested over 40℃ / Ma that should be comparable with the laboratory critical rate of quenching under pressure-keeping(which requires not less than(0.5 ~ 1.0)×102℃ / s),however,there is a huge differential in 1013 order of magnitude for both cases.From the lab phase change regularity of high-temperature high-pressure,such extremely slow cooling rates of plate exhumation is difficult to keep the living coesite.Conversely,in order to make plate exhumation speed reached laboratory critical cooling rate of keeping coesite quenching under pressure,the speed(in air)of plate exhumation must achieve 10 ~ 20km/s.This meant that to make a huge amount matter with such great speed fast penetrate and exhumation in the solid medium that needs a giant abnormal rare driving force of exhumation,however,from physics viewpoint it is extremely difficult to achieve.In addition,the four important factors put forward by Chopin,influencing the coesite preserve during turn-back process,still exist many problems,and also could not overcome the above paradoxes.The time of atomic diffusion and chemical reaction in solid matter usually falls within the range of μs~ ms,and to create an equilibrium within min ~ 102 h.By the isotopic geochronology of ultrahigh pressure metamorphic rocks and "Frying ice cream" model identification,the time from subduction to exhumation was of 10 ~ 20Ma;and the time from geospeedometry incoming structure metamorphism process was more shorter(< 0.2 Ma).Compared the time of atomic diffusion and chemical reaction of matter with that of results obtained from isotopic geochronology and geospeedometry,there is the same huge orders of magnitude 1017 ~ 20difference between them.From the viewpoint of structure and behavior of materials,in research involving several Ma which is not long to the geological time scale during plate exhumation,and several to tens kilomiters of limited size scale,there should be extremely plenty of time for diffusion,chemical reaction,product metamorphism and exchange with mantle materials to establish isotope equilibrium.The view of "short stay time and fast turn-back speed,without adequate isotope exchange did not reach the isotopic equilibrium"is unbelievable.The hypothesis of plate subduction—exhumation besides must be inspected by the above physical foundation,still needs to be able smoothly to explain the relevant features of coesite in the Earth's crust.Due to the existence of diversity solutions of wave velocity anomaly genesis,the subduction—exhumation channels(track) should not determine only by seismic wave topographic anomaly map.Plate subduction and exhumation movement is the big event with a big energy and large space changes,and their energy changes should follow the law of conservation of energy.In P—T—t track(channel),the first phase-transformation products produced in obvious and large quantities during the subduction process of continental crust-rocks should be left,and the phase-transformation products occurred by quenching under pressure-keeping,or under low-pressure low-temperature conditions of mantle matter,and the secondary phase-transformation products of continental crust-rocks during the exhumation process should be left also.Similarly,plate subduction—exhumation should comply with the mass-conservation law,P—T—t track(channel) in upper-mantle should appear corresponding continental crust-rocks matter and their phase-transformation products,and around coesite in the Earth's crust where should exist more mantle-interior materials of up-left.Review the development process of subduction—exhumation hypothesis of itself,the most critical step was neglecting the facts that the localized high-pressure micro-zone induced by local heterogeneity of solid Earth composition,stress and so on,and the influence of other non-equilibrium thermodynamics factors;and adhered to the traditional static fluid Earth model and its pressure—depth conversion formula.From the viewpoint of physical basis,the conjecture of "spectacular geological event" of plate deep-subduction fast-exhumation,still needs more and more scientific evidence to prove.
引文
[1]苏文辉柯石英研究组.2011.一种无需板块俯冲折返的地表柯石英形成新机制.中国科学(D),待发表.
    [2]苏文辉,等.2010.地球板块深折返假说的物理基础分析与讨论.见:中国物理学会高压物理专业委员会.编.第十五届全国高压学术讨论会论文摘要集.2010年10月11~14日,北戴河,158~159.
    [3]张广强,李亮,冯冠霖,薛燕峰,许大鹏,苏文辉.2010.柯石英在压力和温度变化下的结构转变.见:中国物理学会高压物理专业委员会.编.第十五届全国高压学术讨论会论文摘要集.2010年10月11~14日,北戴河,28.
    大别山超高压变质作用与碰撞造山动力学编写组.2005.大别山超高压变质作用与碰撞造山动力学.北京:科学出版社.
    丁悌平.2000.大别山超高压变质岩形成深度的同位素限制.地质力学学报,6(3):39~44.
    嵇少丞,许志琴,金振民,王茜.2010.石英-柯石英相变研究中若干问题的讨论.中国科学(D),40(7):822~830.
    吉林大学固体物理教研室高压合成组.1975.人造金刚石.北京:科学出版社.
    李曙光,李秋立,侯振辉,杨蔚,王莹.2005.大别山超高压变质岩冷却史及折返机制.岩石学报,21(4):1117~24.
    刘贻灿,李曙光.2008.俯冲陆壳内部的拆离和超高压岩石的多板片差异折返:以大别-苏鲁造山带为例.科学通报,53(18):2153~2165.
    吕古贤,王方正,刘瑞.2004.超高压变质的构造附加应力与形成深度.北京:科学出版社.
    罗扬,施旭,贺红亮,赵永红.2007.石英高压相变研究进展.地学前缘,14(3):149~157.
    任纪舜.2000.地壳异常压力学术研讨会报告.地质力学学报,6(3):6.
    苏文辉,刘曙娥,许大鹏,王巍然,姚斌,郭星原,刘志国,钟正.2005.一种由α-石英到柯石英转变的新途径.自然科学进展,15(10):1217~1222.
    苏文辉,刘晓梅,许大鹏,孙敬姝,张广强,刘志国,禹日成,姚立德,黄喜强,千正男,隋郁,吕喆,王巍然,薜燕峰,邢淑芝.2009.柯石英最小静态形成压力与地表柯石英形成新机制及其地学意义.自然科学进展,159(7):730~745.
    滕吉文.2003.固体地球物理学概论.北京:地震出版社.
    王方正.1996.高压、超高压变质岩形成深度讨论.地球科学,21(1):41~44.
    王鹤年.1963.苏北榴辉岩特征及其成因.南京大学学报(地质学版),(1):109~122.
    武红岭,池顺良.2003.微观结构超压机制与超高压矿物的形成.岩石学报,19(4):739~40.
    徐树桐,苏文,刘贻灿,江来利,季寿元.1991.大别山东段高压变质岩中的金刚石.科学通报,36(17):1318~1321.
    许志琴,张泽明,刘福来,杨经绥,李海兵,杨天南,邱海峻,李天福,孟繁聪,陈世忠,唐哲民,陈方远.2003.苏鲁高压-超高压变质带的折返构造及折返机制.地质学报,77(4):433~450.
    许志琴,杨经绥,嵇少丞,张泽明,李海兵,刘福来,张建新,吴才来,李忠海,梁凤华.2010.中国大陆构造及动力学若干问题的认识.地质学报,84(1):1~28.
    杨经绥,许志琴,张建新,张泽明,刘福来,吴才来.2009.中国主要高压-超高压变质带的大地构造背景及俯冲折返机制的探讨.岩石学报,25(7):1529~60.
    叶大年,李达周,董光复,邱秀文.1979.河南信阳变质的3T型多硅白云母和C类榴辉岩.科学通报,(5):217~220.
    张炳熹.2000.序言.地质力学学报,6(3):Ⅰ.
    张树业,胡克,刘晓春,常丽华.1991.大别-苏北-胶南含柯石英榴辉岩中微粒金刚石及自然金的发现.中国地质,(11):28~29.
    周永胜,何昌荣,宋娟,马胜利,马瑾.2005.在差应力条件下石英-柯石英转化的实验研究.科学通报,50(6):565~570.
    Akella J.1979.Quartz-coesite transition and the comparative frictionmeasurements in the piston-cylinder apparatus using talc-alsimag-glass(TAG)and NaCl high-pressure cells.Neues Jahrb.MineralMonatsh.,5:217~224.
    Banno S,Enami M,Hirajima T,Ishiwatari A,Wang Q C.2000.DecompressionP-Tpath of coesite eclogite to granulite fromWeihai,Eastern China.Lithos,52:97~108.
    Bohlen S R,Boettcher AL.1982.The quartz-coesite transformation:Aprecise determination and the effects of other components.J.Geophys.Res.,87(B8):7073~7078.
    Bose K,Ganguly J.1995.Quartz-coesite transition revisted:Reversedexperimental determination at500~1200℃and retrievedthermochemical properties.American Mineralogist,80:231~238.
    Chao E T C,Shoemaker E M,Madsen B M.1960.First naturaloccurrence of coesite.Science,132:220~222.
    Chavagnac V,Jahn B.1996.Coesite-bearing eclogites from the BixilingComplex,Dabie Mountains,China:Sm-Nd ages,geochemicalcharacteristics and tectonic implications.Chemical Geology,133:29~51.
    Chesnokov B V,Popov V A.1965.Increase in the volume of quartzgrains in South Urals eclogite.Dokl.Akad.Nauk.SSSR,162:176~178.
    Chopin C.1984.Coesite and pure pyrope in high-grad bluechists of theWestern Alps--A first record and some consequences.Contrib.Mineral Petrol.,86:107~118.
    Chopin C.1987.Very-high-pressure metamorphism in the western Alps:implications for subduction of continental crust.Philosoph.Trans.Royal Soc.London,Ser.A321(1557):183~197.
    Chopin C.2003.Ultrahigh-pressure metamorphism:tracing continentalcrust into the mantle.Earth and Planetary Science Letters,212:1~14.
    Coes L.1953.A new dense crystalline silica.Science,18:131~132.
    Ding TP.2004.Formation depth estimation of coesite-bearing eclogite inDabie UHPM zone China:Constrained by isotopic studies.J.ofChina University of Geosciences,15(2):216~219.
    Gasparik T.2003.Phase Diagrams for Geoscientists.An Atlas of theEarth's Interior.Berlin:Springer-Verlag,462.
    Ghiribelli B,Frezzotti ML,Palmeri R.2002.Coesite in eclogites of theLanterman Range(Antarctica):evidence from textural and Ramanstudies.European Journal of Mineralogy,14:355~360.
    Gillet P,Ingrin J,Chopin C.1984.Coesite in subducted continentalcrust:P-Thistory deduced from an elastic model.Earth andPlanetary Science Letters,70:426~436.
    Grand S R,Hilst van der R D,Widiyantoro S.1997.Global seismictomography:a snapshot of convection in the Earth.GSA Today,7:1~7.
    GreenⅡH W.1972.Metastable growth of coesite in highly strainedquartz.J.Geophys.Res.,77:2478~2482.
    Hacker B R,Ratschbacher L,Webb L,Ireland T,Walker D,ShuwenD.1998.U/Pb zircon ages constrain the architecture of theultrahigh-pressure Qinling-Dabie Orogen,China.Earth andPlanetary Science Letters,161:215~230.
    Hemingway B S,Bohlen S R,Hankins W B,Westrum E F,Kuskov OL.1998.Heat capacity and thermodynamic properties for coesiteand jadeite,reexamination of the quartz-coesite equilibriumboundary.American Mineralogist,83:409~418.
    Hirth G,Tullis J.1994.The brittle-plastic transition in experimentallydeformed quartz aggregates.J.Geophys.Res.,99:11731~11747.
    Hobbs B E.1968.Rescrystallization of single crystals of quartz.Tectonophysics,6(5):353~401.
    Jiang J X,Lasaga AC.1990.The effect of post-growth thermal events ongrowth-zoned garnet:implications for metamorphicP-Thistorycalculations.Contrib.Mineral Petrol.,105:454~459.
    Kitahara S,Kennedy G C.1964.The quartz-coesite transition.JGeophys.Res.,69:5395~5400.
    Koch-Muller M,Dera P,Fei Y W,Reno B,Sobolev N,Hauri E,Wysoczanski R.2003.OH-in synthetic and natural coesite.American Mineralogist,88:1436~1445.
    Lardeaux J M,Ledru P,Daniel I,Duchene S.2001.The VariscanFrench Massif Central--a new addition to the ultra-high pressuremetamorphic'club':exhumation processes and geodynamicconsequences.Tectonophysics,332:143~167.
    Lathe C,Koch-Muller M,Wirth R,van Westrenen W,Mueller H J,Schilling F,Lauterjung J.2005.The influence of OHin coesite onthe kinetics of the coesite-quartz phase transition.AmericanMineralogist,90:36~43.
    Li S,Jagoutz E,Chen Y,Li Q.2000.Sm-Nd and Rb-Sr isotopicchronology and cooling history of ultrahigh pressure metamorphicrocks and their country rocks at Shuanhe in the Dabie Mountains,Central China.Geochim.Cosmochim.Acta,64(6):1077~1093.
    Liati A,Gebaure D,Wysoczanski R.2002.U-Pb SHRIMP-dating ofzircon domains from UHP garnet-richmafic rocks and late pegmatoidsin the Rhodope zone(N Greece);evidence for Early Cretaceouscrystallization and Late Cretaceous metamorphism.Chem.Geol.,184:281~299.
    Liou J G,Zhang R Y.1996.Occurrences of intergranular coesite inultrahigh-P rocks from the Sulu region,eastern China:implicationsfor lack of fluid during exhumation.American Mineralogist,81:1217~1221.
    Liu Liang,Zhang Junfeng,GreenⅡHW,Jin Zhenmin and Bozhilov KN.2007.Evidence of former stishovite in metamorphosed sediments,implying subduction to>350km.Earth and Planetary ScienceLetters,263(3~4):180~191.
    MacDonald G J F.1956.Quartz-coesite stability relations at hightemperatures and pressure.Am.J.Sci.,254:713~721.
    Martinez J R,Vazquez-Duran A,Martinez Castanon G,Ortega-ZarosaG,Palomares-Sanchez S A,Ruiz F.2008.Coesite formation atambient pressure and low temperatures.Advances in MaterialsScience and Engineering,Volume2008,Article ID406067,doi:10.1155/406067.
    Milanovsky E E.1983.Conference Report--Moscow Conference onthe problems of the Earth's expansion and pulsation.Terra Cognita,3:22~24.
    Mirwald P W,Massonne HJ.1980.The low-high quartz and quartz-coesite transition to40kbar between600℃and1600℃and somereconnaissance data on the effect of NaAlO2component on the lowquartz-coesite transition.J.Geophys.Res.,85(B12):6983~6990.
    Miyashiro A.1976.Metamorphism and Metamorphic Belts.London:George Allen and Unwin,70~102.
    Molen V,Roermund V.1986.The pressure path of solid inclusions inminerals:The retention of coesite inclusions during uplift.Lithos,19:317~324.
    Mosenfelder J L,Bohlen S R.1997.Kinetics of the coesite to quartztransformation.Earth and Planetary Science Letters,153:133~147.
    Mosenfelder J L,Schertl H P,Smyth J R,Liou J G.2005.Factors inthe preservation of coesite:The importance of fluid infiltration.American Mineralogist,90:779~789.
    Naka S,Ito S,Inagaki M.1972.Effect of shear on the quartz-coesitetransition.Journal of the American Ceramic Society,55(6):323~324.
    Nakamura D,Hirajima T.2000.Granulite-facies overprinting ofultrahighpressure metamorphic rocks,Northeastern Su-Lu region,Eastern China.Journal of Petrology,41:563~582.
    Nasdala L,Massonne H J.2000.Microdiamonds from the SaxonianErzgebirge,Germany:in situ micro-Raman characterization.European Journal of Mineralogy,12:495~498.
    Palmeri R,Ghiribelli B,Talarico F,Ricci CA.2003.Ultra-high-pressure metamorphism in felsic rocks:the garnet-phengitegneisses and quarzites from the Lanterman Range,Antarctica.European Journal of Mineralogy,15(3):513~525.
    Palmeri R,Frezzotti M L,Godard G,Davies R J.2009.Pressure-induced incipient amorphization ofα-quartz and transition to coesitein an eclogite from Antarctica:a first record and someconsequences.J.Metamorphic Geol.,27:685~705.
    Perchuk A L,Philippot P.2000a.Geospeedometry and Time Scales ofHigh-Pressure Metamorphism.International Geology Review,42:207~223.
    Perchuk A L,Philippot P.2000b.Nascent subduction:A record in theYukon eclogites.Petrology,8(1):1~18.
    Perchuk A L,Burchard M,Schertl H P,Maresch W V,Gerya T V,Bernhardt H J,Vidal O.2009.Diffusion of divalent cations ingarnet:multi-couple experiments.Contrib.Mineral Petrol.,157:573~592.
    Perrillat J P,Daniel I,Lardeaux J M,Cardon H.2003.Kinetics of thecoesite-quartz transition:application to the exhumation ofultrahigh-pressure rocks.Journal of Petrology,44:773~788.
    Platt J P.1993.Exhumation of high-pressure rocks:a reviewof conceptsand process.Terra Nova,5:119~133.
    Root D B,Hacker B R,Gans P B,Ducea MN,Eide E A,MosenfelderJ L.2005.Discrete ultrahigh-pressure domains in the WesternGneiss Region,Norway:implications for formation and exhumation.Journal of Metamorphic Geology,23(1):45~61.
    Smith D C.1984.Coesite in clinopyroxene in the Caledonides and itsimplications for geodynamics.Nature,310:641~644.
    Smith D C.1995.Microcoesites and microdiamonds in Norway:Anoverview.In:Coleman R G,Wang X.eds.Ultrahigh-pressuremetamorphism.Cambridge,UK:Cambridge Univ.Press,299~355.
    Smyth J R.1977.Quartz pseudomorphs after coesite.AmericanMineralogist,62:828~830.
    Sobolev N V,Shatsky V S.1990.Diamond inclusions in garnetfrommetamorphic rocks:a new environment for diamond formation.Nature,343:742~746.;
    Su Wenhui,Liu Shu'e,Xu Dapeng,Wang Weiran,Yao Bin,LiuXiaomei,Liu Zhiguo and Zhong Zheng.2006.Effects of localmechanical collision with shear stress on the phase transformationfromα-quartz to coesite induced by high static pressure.PhysicalReview B,73:144110,1~7.
    Wallis S R,Ishiwatari A,Hirajima T,Ye K,Guo J,Nakamura D,KatoT,Zhai M,Enami M,Cong B,Banno S.1997.Occurrence andfield relationships of ultrahigh-pressure metagranitoid and coesiteeclogite in the Su-Lu terrane,eastern China.Journal of theGeological Society,154:45~54.
    Wang Q C,Ishiwatari A,Zhao Z,Hirajima T,Hiramatsu N,Enami M,Zhat M G,Li J J,Cong B L.1993.Coesite-bearing granuliteretrograded from eclogite in Weihai,eastern China.EuropeanJournal of Mineralogy,5:141~151.
    Xu Z.1987.Etude tectonique etmicrotectonique de la chaine paleozoiqueet triassique des Quinlings(Chine).Thesede doctoral.Montpelier:Univ.Sci.Tech.Languedoc,1987.
    Xu Zhiqin,Yang Wencai,Ji Shaocheng,Zhang Zeming,Yang Jingsui,Wang Qin,Tang Zemin.2009.Deep root of a continent-continentcollision belt:Evidence from the Chinese Continental ScientificDrilling(CCSD)deep borehole in the Sulu ultrahigh-pressure(HP-UHP)metamorphic terrane,China.Tectonophysics,475:204~219.
    Yoshida D,Hirajima T,Ishiwatari A.2004.Pressure-temperature pathrecorded in the Yangkou garnet peridotite,in Su-Lu ultrahigh-pressure metamorphic belt,eastern China.Journal of Petrology,45(6):1125~1145.
    Zheng Yongfei,Fu Bin,Gong Bing,Li Long.2003.Stable isotopegeochemistry of ultrahigh pressure metamorphic rocks from theDabie-Sulu orogen in China:implications for geodynamics andfluid regime.Earth-Science Reviews,62:105~161.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心