地震尺度下碳酸盐岩储层的岩石物理建模方法(英文)
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
碳酸盐岩油藏的强非均质性以及孔隙结构的复杂性,使得作为连接油藏参数与地震参数重要桥梁的岩石物理模型,以及作为油藏预测和定量表征最有效工具的流体替换成为岩石物理建模的难点与重点。在碳酸盐岩储层复杂孔隙结构与地震尺度下碳酸盐岩储层非均质性分析基础上,研究采用岩石网格化方法,将地震尺度下非均质碳酸盐岩储层岩石划分为具有独立岩石参数的均质岩石子体,根据岩石孔隙成因与结构特征采用不同岩石物理模型分步计算岩石子块干岩石弹性模量,并根据不同孔隙连通性进行流体替换,计算饱和不同流体岩石弹性模量。基于计算的岩石子块弹性模量,采用Hashin-Shtrikman-Walpole弹性边界计算理论方法实现地震尺度下碳酸盐岩储层弹性参数计算。通过对含有不同类型孔隙组合碳酸盐岩储层模型的弹性模量进行计算与分析,明确不同孔隙对岩石弹性参数的影响特征,模拟分析结果与实际资料认识一致。
Strong heterogeneity and complex pore systems of carbonate reservoir rock make its rock physics model building and fluid substitution difficult and complex. However, rock physics models connect reservoir parameters with seismic parameters and fluid substitution is the most effective tool for reservoir prediction and quantitative characterization. On the basis of analyzing complex carbonate reservoir pore structures and heterogeneity at seismic scale, we use the gridding method to divide carbonate rock into homogeneous blocks with independent rock parameters and calculate the elastic moduli of dry rock units step by step using different rock physics models based on pore origin and structural feature. Then, the elastic moduli of rocks saturated with different fluids are obtained using fluid substitution based on different pore connectivity. Based on the calculated elastic moduli of rock units, the Hashin-Shtrikman-Walpole elastic boundary theory is adopted to calculate the carbonate elastic parameters at seismic scale. The calculation and analysis of carbonate models with different combinations of pore types demonstrate the effects of pore type on rock elastic parameters. The simulated result is consistent with our knowledge of real data.
引文
Abriel,W.L.,2009,Reservoir geophysics: Applications:Society of Exploration Geophysicists,Tulsa.
    Avseth,P.R.,Mukerji,T.,and Mavko,G.,2005,Quantitativeseismic interpretation: Cambridge University Press,NewYork,80– 120.
    Ba,J.,Carcione,J.M.,Cao,H.,et al.,2012,Velocitydispersion and attenuation of P waves in partially-saturated rocks: Wave propagation equations in double-porosity media: Chinese J.Geophys.,55(1),219– 231.
    Batzle,M.,and Wang,Z.,1992,Seismic properties of porefluids: Geophysics,57(11),1396– 1408.
    Biot,M.A.,1956,Theory of propagation of elastic wavesin a fluid-saturated porous solid,I.Low frequency range,II.Higher frequency range: J.Acoust.Soc.Amer.,28,168– 191.
    Biot,M.A.,1962,Mechanics of deformation and acousticpropagation in porous media: J.Appl.Phys.,33(4),1482– 1498.
    Dutta,N.C.,and Ode,H.,1979,Attenuation and dispersionof compressional waves in fluid-filled porous rocks withpartial gas saturation (white model) Part I: Biot theory:Geophysics,44,1777– 1788.
    Dvorkin,J.,and Nur,A.,1993,Dynamic poroelasticity: Aunified model with the squirt and the Biot mechanisms:Geophysics,58,524– 533.
    Dvorkin,J.,and Nur,A.,1996,Elasticity of high-porositysandstones: Theory for two North Sea datasets: Geophysics,61,1363– 1370.
    Fabricius,I.,Bachle,G.,and Eberli,G.,2010,Elastic moduliof dry and water-saturated carbonates-Effect of depositionaltexture,porosity,and permeability: Geophysics,75(3),N65-N78.
    Gassmann,F.,1951,Elastic waves through a packing ofspheres: Geophysics,16,673– 685.
    Ghosh,R.,and Sen,M.,2012,Predicting subsurface CO2movement: From laboratory to field scale: Geophysics,77(3),M27– M37.
    Hashin,Z.,and Shtrikman,S.,1963,A variational approachto the elastic behavior of multiphase materials: JournalMechanics Physical Solids,11,127– 140.
    Jouini,M.,and Vega,S.,2011,Simulation of elasticproperties in carbonates: The Leading Edge,30(12),1400– 1407.
    Mavko,G.,and Mukerji,T.,1995,Pore space compressibilityand Gassmann’s relation: Geophysics,60(6),1743–1749.
    Mavko,G.,Mukerji,T.,and Dvorkin,J.,2009,The rockphysics handbook 2ndedition: Cambridge UniversityPress,New York,207– 311.
    Nolen-Hoeksema,R.C.,2000,Modulus-porosity relations,Gassmann’s equation,and the low-frequency elastic-wave response to fluids: Geophysics,65(5),1355– 1363.
    Para,J.O.,1997,The transversely isotropic poroelasticwave equation including the Biot and the squirtmechanisms: Theory and application: Geophysics,62,309– 318.
    Ruiz,F.,and Dvorkin,J.,2009,Sediment with porousgrains: rock-physics model and application to marinecarbonate and opal: Geophysics,74(1),E1– E15.
    Sams,M.S.,and Andrea,M.,2001,The effect of claydistribution on the elastic properties of sandstones:Geophysical Prospecting,49(3),128– 150.
    Sayers,C.M.,2008,The elastic properties of carbonates:The Leading Edge,27(8),1020– 1023.
    Tang,X.M.,2011,Unified theory for elastic wavepropagation through porous media containing cracks-Anextension of Biot’s poroelastic wave theory: Sci.ChinaEarth Sci.,41(6),784– 795.
    Vega,S.,Prajapat,J.V.,and al Mazrooei,A.,2010,Preliminary experiments to evaluate the Gassmannequation in carbonate rocks: Calcite and dolomite: The Leading Edge,29(8),906– 911.
    Verwer,K.,Eberli,G.,Baechele,G.,et al.,2010,Effectof carbonate pore structure on dynamic shear moduli:Geophysics,75(1),E1– E8.
    Vialle,S.,and Vanorio,T.,2011,Laboratory measurementsof elastic properties of carbonate rocks during injectionof reactive CO2-saturated water: Geophysical ResearchLetters,38(1),L01302,1– 5.
    Wang,H.Y.,Sun,Z.D.,and Chapman,M.,2012,Velocitydispersion and attenuation of seismic wave propagationin rocks: Acta Petrolei Sinica,33(2),332– 342.
    Wood,A.W.,1955,A textbook of sound: The MacMillanCo.,New York.
    Xu,S.,and Payne,M.,2009,Modeling elastic properties incarbonate rocks: The Leading Edge,28(1),66– 74.
    Yang,K.D.,Yang,D.H.,and Wang,S.Q.,2002,Wave-field simulation based on the Boit-squirt equation:Chinese J.Geophys.,45,863– 861.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心