叠前三参数非高斯反演方法研究
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
针对地球物理反演中广泛采用的"噪声高斯分布假设",本文研究了叠前地震资料中噪声的非高斯分布特征,提出了针对非高斯噪声的地震叠前非高斯反演概念和思想,构造了能同时压制高斯和非高斯噪声的混合范数作为反演目标函数,采用改进的Powell算法进行求解,有效地抑制了叠前地震资料中的高斯和非高斯混合噪声.模型试算和实际地震数据的反演结果验证了方法的正确性和算法的可靠性.
In view of the wide use of the "Gaussian distribution hypothesis of noise" in the geophysical inversion problems,we study the non-Gaussian distribution characteristics of the noises in the pre-stack seismic data.Upon this analysis,the concept of non-Gaussian inversion of pre-stack three-term inversion is put forward,in which the mixed-norm is proposed for suppressing both the Gaussian and non-Gaussian noises.In view of the non-conductivity of the objective function,the Powell algorithm is used to solve the objective function.Model test and real seismic data inversion results show the correctness and reliability of the algorithm.
引文
[1]Zoeppritz K.On the Reflection and Penetration of Seismic Wavesthrough Unstable Layers.Goettinger Nachr.,1919:66-84.
    [2]尚永生,杨长春,王真理等.塔里木盆地卡4区块AVO研究.地球物理学进展,2007,22(5):1408-1415.Shang Y S,Yang C C,Wang Z L,et al.AVO research inKa-4region of Tarim basin.Progress in Geophysics(inChinese),2007,22(5):1408-1415.
    [3]Smith T M,Sondergeld C H.Examination of AVO responsesin the eastern deepwater Gulf of Mexico.Geophysics,2002,66(6):1864-1876.
    [4]陈建江,印兴耀,张广智.基于贝叶斯理论的振幅随偏移距变化三参数同步反演.中国石油大学学报(自然科学版),2007,31(3):33-38.Chen J J,Yin X Y,Zhang G Z.Simultaneous three-termAVO inversion based on Bayesian theorem.Journal of ChinaUniversity of Petroleum(Edition of Natural Science)(inChinese),2007,31(3):33-38.
    [5]Buland A,Omre H.Bayesian linearized AVO inversion.Geophysics,2003,68(1):185-198.
    [6]Theune U,Jensǎs I,Eidsvik J.Analysis of prior modelsfor a blocky inversion of seismic AVA data.Geophysics,2010,75(3):c25-c35.
    [7]杨迪琨,胡祥云.含噪声数据反演的概率描述.地球物理学报,2008,51(3):901-907.Yang D K,Hu X Y.Inversion of noisy data by probabilisticmethodology.Chinese J.Geophys.(in Chinese),2008,51(3):901-907.
    [8]Alecu T I,Missonnier P,Voloshynovskiy S,et al.Soft/hardfocalization in the EEG inverse problem.IEEE Workshop onStatistical Signal Processing,2005:978-983.
    [9]Tichavsky P,Koldovsky Z,Yeredor A,et al.A hybridtechnique for blind separation of non-Gaussian and time-correlated sources using a multicomponent approach.IEEETransactions on Neural Networks,2008,19(3):421-430.
    [10]Karimi O,Omre H,Mohammadzadeh M.Bayesian closed-skew Gaussian inversion of seismic AVO data for elasticmaterial properties.Geophysics,2010,75(1):R1-R11.
    [11]Gidlow P M,Smith G C,Vail P J.Hydrocarbon detectionusing fluid factor traces,a case study:how useful is AVOanalysis?Joint SEG/EAEG Summer Research Workshop,Technical Program and Abstracts,1992:78-89.
    [12]Hampson D P,Russell B H,Bankhead B.Simultaneousinversion of pre-stack seismic data.75th Annual InternationalMeeting,SEG,Expanded Abstracts,2005:1633-1638.
    [13]Martin R D,Schiwartz S C.Robust detection of a knownsignal in nearly Gaussian noise.IEEE Trans.on IT,1971,JT-17(l):50-56.
    [14]Sangston K J,Gerlach K R.Coherent detection of radartargets in a non-Gaussian background.IEEE Trans.Aerosp.Electron.Syst.,1994,30(2):330-340.
    [15]Marquardt D W.An algorithm for least-squares estimation ofnonlinear parameters.Journal of the Society for Industrialand Applied Mathematics,1963,11(2):431-441.
    [16]Powell M J D.An efficient method for finding the minimumof a function of several variables without calculating derivatives.The Computer Journal,1964,7(2):155-162.
    [17]朱向阳,熊有伦.一种改进的Powell共轭方向算法.控制与决策,1996,11(2):304-308.Zhu X Y,Xiong Y L.A modification for Powell′s method.Control and Decision(in Chinese),1996,11(2):304-308.

版权所有:© 2021 中国地质图书馆 中国地质调查局地学文献中心