南海ODP1144站深海沉积牵引体的岩石物理模型研究
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
ODP1144站是南海唯一钻揭深海沉积牵引体的站位,其完整的岩芯和测井资料为开展该沉积牵引体的岩石物理模型研究提供了良好的基础。此项研究对于理解南海深海沉积物中岩性参数与弹性参数间的关系具有重要意义,并可为根据反射地震资料开展定量岩性参数预测提供依据。对现有的深海沉积物岩石物理模型包括Wood悬浮模型、等球体颗粒接触模型、Sun速度—孔隙度关系模型进行了综述。根据岩芯分析资料将1144站深海沉积物的矿物组分简化为粘土矿物、碳酸盐、陆源碎屑和硅质生物4类;其中后3种组分的弹性模量及密度值分别由其代表矿物——方解石、石英及蛋白石的理论值代替,粘土矿物组分的等效弹性模量和等效密度则分别由Voigt-Reuss-Hill平均和体积平均计算得出。将3种岩石物理模型应用于1144站,计算得出深海沉积物的纵波速度并将其与声波测井纵波速度进行比较。结果表明,Sun模型计算结果与实测结果的吻合最好,误差最小;Wood模型所得结果在浅层与实测结果较吻合,在深层与实测结果出现偏差,误差较小;而等球体颗粒接触模型计算结果整体偏高,误差较大。
ODP Site 1144 is the only site for drilling into the sediment drift offshore Dongsha Islands,northern South China Sea.Integration of core and logging data from this site provides a good basis for reconstructing the rock physics model of the deep-sea sediment drift,which is of significance for understanding the relation between the lithological and elastic parameters of the deep-sea sediment and for the quantitative prediction of rock properties by reflection seismic data.The rock physical models for the deep-sea sediments are reviewed,including the Wood's suspension model,the identical spherical grain contact model,and Sun's velocity-porosity model for deep-sea sediments.Based on data of core smear slide analysis,the deep-sea sediments at Site 1144 are simplified as consisting of four major mineral components,which are clay minerals,which are carbonate,terrigenous clastic minerals and siliceous minerals,respectively.The elastic moduli and density of the latter three mineral components are substituted by using the corresponding values of their representative minerals,which are calcite,quartz,and opal;and the effective parameters of the clay minerals are determined by using the Voigt-Reuss-Hill and volume averaging,respectively.All the three rock physics models are applied into the deep-sea sediments at Site 1144 to estimate their P-wave velocity,which is then compared with that from the sonic logging.The result suggests that the estimated result by Sun's model is most suitable to the measured result with the smallest error,that of Wood's model matches the measured result in the shallow area but deviates from it with relative small error in the deep area,while that of the identical spherical grain contact model is overall higher than measured result with relative big error.
引文
[1]Wang P X,Prell W,Blum P.Proceedings of the Ocean DrillingProgram,Initial Reports,Volume 184[R].Texas:Texas A&M U-niversity,2000:24-25.
    [2]Wang P X,Zhao Q H,Jian Z M,et al.Thirty million year deep searecords in the South China Sea[J].Chinese Science Bulletin,2003,48(23):2 524-2 534.
    [3]Li Jiaying.Quaternary diatoms from the South China Sea,Leg184,Site 1144 and their palaeoenvironmental evolution[J].Geo-logical Review,2002,48(5):542-551.[李家英.南海北部陆坡ODP 1144站位第四纪硅藻及其古环境演变[J].地质评论,2002,48(5):542-551.]
    [4]Li Jian,Wang Rujian.Paleoproductivity variability of the northernSouth China Sea during the Past 1 Ma:The opal record from ODPSite 1144[J].Acta Geologica Sinica,2004,78(2):228-233.[李建,王汝建.南海北部一百万年以来的表层古生产力变化:来自ODP l144站的蛋白石记录[J].地质学报,2004,78(2):228-233.]
    [5]Zheng Fan,Li Qianyu,Chen Muhong.A millennial scale Mid-Pleistocene paleoclimate record of planktonic foraminifera from thenorthern South China Sea Site 1144[J].Earth Science—Journal ofChina University of Geosciences,2006,31(6):780-786.[郑范,李前裕,陈木宏.南海北部1144站中更新世浮游有孔虫的千年尺度古气候记录[J].地球科学——中国地质大学学报,2006,31(6):780-786.]
    [6]Huang Wei,Jian Zhimin,Bühring C.The Millennial-scale climatefluctuations revealed by the records of color reflectance from ODPsite 1144 in the northern South China Sea[J].Marine Geology&Quaternary Geology,2003,23(3):5-8.[黄维,翦知湣,BühringC.南海北部ODP 1144站颜色反射率揭示的千年尺度气候波动[J].海洋地质与第四纪地质,2003,23(3):5-8.]
    [7]Jin Haiyan,Jian Zhimin.Paleoclimatic instability during the Mid-Pleistocene transition:Implications from foraminiferal stable isotopeat ODP Site 1144,northern South China Sea[J].Advances inEarth Science,2007,22(9):914-921.[金海燕,翦知湣.南海北部ODP 1144站中更新世气候转型期有孔虫稳定同位素古气候意义[J].地球科学进展,2007,22(9):914-921.]
    [8]Wei Gangjian,Liang Xirong,Li Xianhua,et al.Major and trace el-emental compositions of the microtektites from ODP Site 1144[J].Geochimica,2002,31(1):35-42.[韦刚健,梁细荣,李献华,等.ODP 1144站钻孔沉积物中微玻璃陨石的元素地球化学特征[J].地球化学,2002,31(1):35-42.]
    [9]Shao Lei,Li Xianhua,Wei Gangjian,et al.Provenance of a promi-nent sediment drift on the northern slope of the South China Sea[J].Science in China(Series D),2001,44(10):919-925.[邵磊,李献华,韦刚健,等.南海陆坡高速堆积体的物质来源[J].中国科学:D辑,2001,31(10):828-833.]
    [10]Shao Lei,Li Xuejie,Geng Jianhua,et al.Deep water bottom cur-rent deposition in the northern South China Sea[J].Science inChina(Series D),2007,50(7):1 060-1 066.[邵磊,李学杰,耿建华,等.南海北部深水底流沉积作用[J].中国科学:D辑,2007,37(6):771-777.]
    [11]Zhong Guangfa,Li Qianyu,Hao Hujun,et al.Current status ofdeep-water sediment wave studies and the South China Sea per-spectives[J].Advances in Earth Science,2007,22(9):907-913.[钟广法,李前裕,郝沪军,等.深水沉积物波及其在南海研究之现状[J].地球科学进展,2007,22(9):907-913.]
    [12]Wood A W.A Textbook of Sound[M].New York:The MacMil-lan Co.,1955:360.
    [13]Hamilton E L.Elastic properties of marine sediments[J].Journalof Geophysical Research,1971,76(2):576-604.
    [14]Hamilton E L.Shear-wave velocity versus depth in marine sedi-ments:A review[J].Geophysics,1976,41(5):985-996.
    [15]Hamilton E L,Bachman R T,Berger W H,et al.Acoustic andrelated properties of calcareous deep-sea sediments[J].Journal ofSedimentary Petrology,1982,52(3):733-753.
    [16]Richardson M D,Briggs K B.On the use of acoustic impedancevalues to determine sediment properties[J].Proceedings of the In-stitute of Acoustics,1993,15(2):15-23.
    [17]Gassmann F.Elastic waves through a packing of spheres[J].Ge-ophysics,1951,16(4):673-685.
    [18]Dvorkin J,Nur A.Elasticity of high-porosity sandstone:Theoryfor two North Sea data sets[J].Geophysics,1996,61(5):1 363-1 370.
    [19]Mindlin R D.Compliance of elastic bodies in contact[J].Journalof Applied Mechanics,1949,16:259-268.
    [20]Hashin Z,Shtrikman S.A variational approach to the theory ofthe elastic behavior of muhiphase materials[J].Journal of Me-chanics and Physics Solids,1963,11(2):127-140.
    [21]Dvorkin J,Prasad M.Elasticity of marine sediments:Rock phys-ics modeling[J].Geophysical Research Letters,1999,26(12):1 781-1 784.
    [22]Ruiz F,Dvorkin J.Rock physics model for deep-sea shallow cal-careous sediment with porous grains[J].SEG Annual Meeting Ex-panded Abstracts,2007,26:1 599-1 603.
    [23]Ruiz F,Dvorkin J.Sediment with porous grains:Rock-physicsmodel and application to marine carbonate and opal[J].Geophys-ics,2009,74(1):1-15.
    [24]Berryman J G.Long-wavelength propagation in composite elasticmedia[J].Journal of the Acoustic Society of America,1980,68(B):1 809-1 831.
    [25]Sun Y F.Core-log-seismic Integration in Hemipelagic MarineSediments on the Eastern Flank of the Juan de Fuca Ridge[R].Proceedings of the Ocean Drilling Program,Scientific Results,2000.
    [26]Sun Y F.On the Foundations of the Dynamical Theory of Frac-tured Porous Media and the Gravity Variations Caused by Dilatan-cies[D].New York:Columbia University,1994.
    [27]Reuss A.Berechnung der fliessgrenze von mischkristallen auf gr-und der Plastizitatsbedingungen für einkristalle[J].Zeitschrift fürAngewandte Mathematic aus Mechanik,1929,9:49-58.
    [28]Voigt W.Lehrbuch der Kirstallphysik[M].Teubner,Leipzig,1928.
    [29]Hill R.The elastic behavior of a crystalline aggregate[J].Pro-ceedings of the Physical Society,1952,A65(5):349-354.
    [30]Biot M A.Theory of propagation of elastic waves in a fluid satu-rated porous solid.I.Low frequency range[J].Journal of the A-coustical Society of America,1956,28(2):168-178.
    [31]Biot M A.Theory of propagation of elastic waves in a fluid satu-rated porous solid.II.Higher frequency range[J].Journal of theAcoustical Society of America,1956,28(2):179-191.
    [32]Wan S M,Li A C,Clift P D,et al.Increased contribution of ter-rigenous supply from Taiwan to the northern South China Seasince 3Ma[J].Marine Geology,2010(278):115-121.
    [33]Mavko G,Mukerji T,Dvorkin J.The Rock Physics Handbook[M].Cambridge:Cambridge University Press,1998:313-314.
    [34]Chaika C.Physical Properties and Silica Diagenesis[D].Cali-fornia:Stanford University,1998.
    [35]Batzle M,Wang Z J.Seismic properties of pore fluids[J].Geo-physics,1992,57(11):1 396-1 408.
    [36]Alexandrov K S,Ryzhova T V.Elastic properties of rock-formingminerals II layered silicates[J].Bulletin USSR Academy of Sci-ence Geophysics,1961,9:1 165-1 168.
    [37]Katahara K W.Clay mineral elastic properties[J].SEG AnnualMeeting Expanded Abstracts,1996,15:1 691-1 694.
    [38]Han D H.Effects of Porosity and Clay Content on Wave Veloci-ties in Sandstones and Unconsolidated Sediments[D].Califor-nia:Stanford University,1987.
    [39]Tosaya C A.Acoustical Properties of Clay Bearing Rocks[D].California:Stanford University,1982.
    [40]Castagna J P,Han D H,Batzle M L.Issues in rock physics andimplications for DHI interpretation[J].The Leading Edge,1985,14:883-885.
    [41]Wang Z,Wang H,Cates M E.Effective elastic properties of solidclays[J].Geophysics,2001,66(2):428-440.
    [42]Vanorio T,Prasad M,Nur A.Elastic properties of dry clay miner-al aggregates,suspensions and sandstones[J].Geophysical Jour-nal International,2003,155(1):319-326.
    [43]Mondol N H,Bjrlykke K,Jahren J,et al.Experimental mechani-cal compaction of clay mineral aggregates—Changes in physicalproperties of mudstones during burial[J].Marine and PetroleumGeology,2007,24(5):289-311.
    [44]Mondol N H,Jahren J,Bjrlykke K,et al.Elastic properties ofclay minerals[J].The Leading Edge,2008,27(6):758-770.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心