CRP道集叠前精细处理技术应用
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
随着地震反演由叠后发展到叠前,地震叠前弹性阻抗反演要求更大的入射角范围,即需要更大的偏移距范围,这就要求叠前偏移得到的共反射点(CRP)道集更加平直,动校拉伸效应更小。这就需要在叠前偏移之后,对CRP道集进行更精细的处理,尽量消除剩余时差的影响。消除剩余时差和动校拉伸效应最有效的方法是各向异性动校正,而各向异性动校正的应用需要相对正确的各向异性参数VNMO和η。本文应用一种高密度双谱扫描的方法,首先在CRP道集中进行高密度扫描,得到两个与各向异性参数有关的量值τ0和dtn,配合横向和纵向的插值、平滑,再应用位移双曲方法,将τ0和dtn转化为各向异性参数VNMO和η,最后应用各向异性动校正,最终消除由地层各向异性引起的叠前道集不平和剩余时差。本文给出了这种方法的基本流程,并在合成记录和实际数据上加以应用,都取得了较好的效果。双谱扫描的方法能够得到较为准确的各向异性参数,应用于各向异性动校正能够较好地消除剩余时差和动校拉伸对CRP道集的影响,提高有效偏移距的范围。
With the development of the post-stack seismic inversion into the pre-stack seismic inversion, the prestack seismic inversion of the elastic impedance requires a large range of incident angle, i.e. a large offset range, which means a very smooth CRP gather from the pre-migration and a small NMO stretch. So after PSTM, a detailed processing on pre-stack gathers will be carried out to reduce the impact of the residual moveout. The most effective way to reduce the residual moveout and the NMO stretch is the anisotropic NMO, which requires exact anisotropic parameters VNMO and η. In this paper, an anisotropic NMO application process is introduced, which uses the high-density dual-spectral scanning method to obtain τ0 and dtn then converts τ0 and dtn to the anisotropic parameters VNMO and η, which are required for the anisotropic NMO using the shifted hyperbola approach, with the horizontal and vertical interpolation and smoothing. These two parameters will be used in the anisotropic NMO to avoid the bad effects of anisotropy. This method is applied to the synthetic data and field data and good results are obtained, which means that this method can obtain the quite accurate anisotropic parameter, reduce bad influences of residual moveout and NMO stretch on the CRP gather and increase the range of effective offset.
引文
[1]贾承造.岩性地层油气藏地质理论与勘探技术[M].北京:石油工业出版社,2008.Jia Chengzao.Geological theory and exploration technology for lithostratigraphic hydrocarbon reservoirs[M].Beijing:Petroleum Industry Press,2008.
    [2]郭树祥.地震资料保幅处理讨论[J].油气地球物理,2009,7(1):1-3.Guo Shuxiang.Petroleum Geophysics,2009,7(1):1-3.
    [3]薛冈,王良书,胡中平.大炮检距地震资料动校正方法比较[J].石油地球物理勘探,2003,38(2):151-155.Xue Gang,Wang Liangshu,Hu Zhongping.Oil Geophysical Prospecting,2003,38(2):151-155.
    [4]Castle R J.A theory of normal moveout[J].Geophysics,1994,59(6):983-999.
    [5]Taner M T,Koehler F.Velocity spectra-digital computer derivation and application of velocity functions[J].Geophysics,1969,34(6):859-881.
    [6]Thomsen L.Weak elastic anisotropy[J].Geophysics,1986,51(10):1954-1966.
    [7]Alkhalifah T,Tsvankin I.Velocity analysis for transversely isotropic media[J].Geophysics,1995,60(5):1550-1566.
    [8]Siliqi R,BousquiéN.Anelliptic time processing based on a shifted hyperbola approach[C].2000SEG Annual Meeting,Calgary,Alberta,Canada,August6-11,2000.
    [9]Grechka V,Tsvankin I.3-D description of normal moveout in anisotropic inhomogeneous media[J].Geophysics,1998,63(3):1079-1092.
    [10]Crampin S.Shear-wave polarizations:A plea for three-component recording[C].1983SEG Annual Meeting,Las Vegas,Nevada,USA,September11-15,1983.
    [11]Crampin S.Seismic wave propagation through a cracked solid:Polarization as a possible dilatancy diagnostic[J].Geophysical Journal of the Royal Astronomical Society,1978,53(3):467-496.
    [12]Crampin S.Effective anisotropic elastic constants for wave propagation through cracked solids[J].Geophysical Journal of the Royal Astronomical Society,1984,76(1):135-145.
    [13]Postma G W.Wave propagation in a stratified medium[J].Geophysics,1955,20(4):780-806.
    [14]Daley P F,Hron F.Reflection and transmission coefficients for transversely isotropic media[J].Bulletin of the Seismological Society of America,1977,67(3):661-675.
    [15]Tsvankin I,Thomsen L.Nonhyperbolic reflection moveout in anisotropic media[J].Geophysics,1994,59(8):1290-1304.
    [16]Tsvankin I.Anisotropic parameters and P-wave velocity for orthorhombic media[J].Geophysics,1997,62(4):1292-1309.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心