缝洞型碳酸盐岩储集体特征及预测——以A油田P_Z段为例
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
以A油田Pz段储集体为研究对象,采用井震联合技术进行精细连井标定可以增强层位标定横向上的连续性和可靠性。引入现代岩溶理论指导基底顶面构造解释,落实尖灭线及构造圈闭。研究区重新落实碳酸盐古潜山构造52.7 km2,增加了勘探开发的面积。利用三维可视化技术展现古地貌特征,将古地貌分为峰丛洼地、峰林谷地和古侵蚀沟3种类型。综合地质、测井和地震响应特征,将研究区储集体分为溶洞孔隙型、裂缝孔隙型和裂缝型3种类型。综合地震反演和蚂蚁体追踪建模技术,明确了研究区3类储集体的空间展布特征。认为Ⅰ类溶洞孔隙型储集体主要沿古构造高部位发育,而且位置越高储层厚度越大;Ⅱ类裂缝孔隙型储集体发育于构造斜坡部位;Ⅲ类裂缝型储集体受断裂影响明显,发育于断裂附近。
This paper studied the reservoir of Pz layer in A oilfield.Fine cross-well calibration by using the technique of log-seismic integration can improve the lateral continuity and reliability of stratigraphic correlation.Modern karst patterns were introduced to guide basement top structure interpretation,and to delineate pinch-out line and structural trap.The newly found buried hill structure is 52.7 km2,which increase the exploration area.We divided the palaeogeomorphology into peak-cluster depression,peak forest valley and paleo-erosive gulley with 3D visualization technique.Based on integration of geologic data,logging data and seismic response,we divided the reservoirs into three types including cavern-pore fracture-pore and fracture types.We delineated the distribution of the reservoirs through seismic inversion and ant tracking modeling.Type Ⅰ reservoirs(i.e.cavern-pore type) mainly occur on paleo-structure highs and their thickness enlarge along with their increasing height.Type Ⅱ reservoirs(i.e.fracture-pore type) distribute at the slope of the structure.Type Ⅲ reservoirs(i.e.fracture type) occur near faults,thus are significantly affected by the faults.
引文
[1]康玉柱.中国海相油气田勘探实例之四——塔里木盆地塔河油田的发现与勘探[J].海相油气地质,2005,10(4):31-38.Kang Yuzhu.Cases of discovery and exploration of marine fieldsin China(Part 4):tahe oilfield in Tarim basin[J].Marine Ori-gin Petroleum Geology,2005,10(4):31-38.
    [2]张抗,王大锐.中国海相油气勘探的启迪[J].石油勘探与开发,2003,30(2):9-16.Zhang Kang,Wang Darui.Some thoughts on petroleum explora-tion in marine sedimentary basins of China[J].Petroleum Ex-ploration and Development,2003,30(2):9-16.
    [3]杨敏,靳佩.塔河油田奥陶系缝洞型油藏储量分类评价技术[J].石油与天然气地质,2011,32(4):625-630.Yang Min,Jin Pei.Reserve classification and evaluation of theOrdovician fractured-vuggy reservoirs in Tahe oilfield[J].Oil&Gas Geology,2011,32(4):625-630.
    [4]Loucks R G.Paleocave carbonate reservoirs:origins,burial-depth modification,spatial complexity,and reservoir im plica-tions[J].AAPG Bulletin,1999,83(11):1795-1834.
    [5]McMechan G A,Loucks R G,Mescher P,et al,Characterizationof a coalesced.collapsed paleocave reservoir analog using GPRand well-core data[J].Geophyscs,2002,67(4):1148-1158.
    [6]Loucks R G,M escher P K,M cM echan G A.Three-dimen-sional architecture of a coalesced,collapsed-paleocave system inthe Lower Ordovician Ellenburger Group,Central Texas[J].AAPG Bulletin,88(5):545-564.
    [7]Yaacov A.Fractures and karst in hard carbonates in northernIsrael[J].Geological Survey of Israel,1996,10:90-94.
    [8]王光付.碳酸盐岩溶洞型储层综合识别及预测方法[J].石油学报,2008,29(1):47-51.Wang Guangfu.Integrative identification and prediction meth-ods for carbonate rock cave reservoir[J].Acta Petroleum Sin-ca,2008,29(1):47-51.
    [9]Gislain B.Madiba G A.McMechan.Case history:seismic im-pedance inversion and interpretation of a gas carbonate reservoirin the Alberta Foothills,western Canada[J].Geophysics,Sep-tember October 2003,68(5):1460-1469.
    [10]Michael J,Zeitlin.How 3-D visualization will change in terpre-tation strategies in future oil companies[J].The Leading Edge,2001:(12)54.
    [11]王萍,袁向春,李江龙,等.塔河油田4区古地貌对储层分布的影响[J].石油与天然气地质,2011,31(3):382-387.Wang Ping,Yuan Xiangchun,Li Jianglong,et al.Control of pa-leogeomorphology on reservoir distribution in Block 4 of Taheoilfield[J].Oil&Gas Geology,2011,31(3):382-387.
    [12]焦伟伟,吕修祥,周园园,等.塔里木盆地塔中地区奥陶系碳酸盐岩储层主控因素[J].石油与天然气地质,2011,32(2):199-206.Jiao Weiwei,LüXiuxiang,Zhou Yuanyuan,et al.Main control-ling factors of the Ordovician carbonate reservoirs in Tazhongarea,the Tarim Basin[J].Oil&Gas Geology,2011,32(2):199-206.
    [13]杨江峰,关达,朱文斌,等.塔里木盆地塔中卡1三维工区碳酸盐岩储层预测技术与应用[J].石油与天然气地质,2012,33(1):61-69.Yang Jiangfeng,Guan Da,Zhu Wenbin,et al.Carbonate reser-voir prediction technology and its application in Ka-1 3D acre-age in Tazhong area,Tarim Basin[J].Oil&Gas Geology,2012,33(1):61-69.
    [14]何治亮,魏修成,钱一雄,等.海相碳酸盐岩优质储层形成机理与分布预测[J].石油与天然气地质,2011,32(4):489-498.He Zhiliang,Wei Xiucheng,Qian Yixiong,et al.Forming mech-anism and distribution prediction of quality marine carbonatereservoirs[J].Oil&Gas Geology,2011,32(4):489-498.
    [15]曾正明.合成地震记录层位标定方法改进[J].石油地球物理勘探,2005,40(5):576-581.Zeng Zhengming.Improving horizons-labeling method on seis-mic synthetic records[J].Oil Geophysical Prospecting,2005,40(5):576-581.
    [16]周红涛,柳建华.核磁共振和MDT测井在塔河油田碎屑岩储层评价中的应用[J].石油物探,2011,(5):526-529.Zhou Hongtao,Liu Jianhua.Application of nuclear magneticresonance and MDT logging in the complex clastic reservoitr inTahe Oilfield[J].Geophysical Prospecting for Petroleum,2011,(5):526-529.
    [17]杨晓春,李小凡,张美根.地震波反演方法研究的某些进展及其数学基础[J].地球物理学进展,2001,16(4):96-109.Yang Xiaochun,Li Xiaofan,Zhang Meigen.Progress and met-hematical basis of investigations of seismic inversion[J].Pro-gress in Geophysics,2001,16(4):96-109.
    [18]史军.蚂蚁追踪技术在低级序断层解释中的应用[J].石油天然气学报,2009,31(2):257-258.Shi Jun.Application of ant tracking technology in small fault in-terpretation[J].Journal of Oil and Gas Technology,2009,31(2):257-258.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心