中国西部及邻区岩石圈热状态与流变学强度特征
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
根据均衡原理制约的地热计算得到中国西部及邻区岩石圈的温度分布状态,以40、100km和莫霍面深度等温线图的形式表示,同时计算了以1 350℃等温面深度表示的中国西部及邻区的热岩石圈厚度。结果显示:中国大陆西北部地区、哈萨克斯坦东部地区以及上扬子地块、蒙古中西部地区和青藏高原中部的深部地温较低,青藏高原北部、东部以及天山褶皱带中部的深部地温高。在中国西部及邻区范围内,岩石圈厚度在180km以上的地区包括准噶尔盆地,塔里木盆地核心部位,西藏东部、中部以及祁连山地区。上扬子地块(四川盆地)岩石圈厚度为160km或更多,蒙古中西部地区以及哈萨克斯坦东部地区的岩石圈厚度为140~180km。青藏高原东部边缘和藏北地区以及天山中部吉尔吉斯伊塞克湖地区的岩石圈厚度较薄(<140km)。地热计算得到的结果与地震层析成像研究结果之间相互吻合。采用湿的上地幔流变学模型的计算结果表明,青藏高原及其东部边缘、天山褶皱带中部和蒙古中西部地区的岩石圈流变学强度模型为"奶油蛋糕(crèmebrlée)"型,其强度剖面显示强地壳而弱地幔的特点;上扬子地块(四川盆地)、准噶尔盆地、塔里木盆地和哈萨克斯坦东部地区岩石圈流变学强度模型为"果冻三明治(jelly sandwich)"型。
Lithospheric temperatures beneath the western part of China and its adjacent region were estimated by local isostasy equilibrium-constrained geothermal calculation in this study.Maps of the lateral temperature variation at depths of 40100km and Moho boundary are presented for the western part of China and its adjacent region,and meanwhile,the thermal thickness of the lithosphere is calculated as represented by the depth of 1350℃isotherm.The results show that the temperatures at depth are low in the northwestern part of China continent,and the eastern part of Kazakhstan and Upper Yangtze massif(Sichuan Basin),as well as in central and western parts of Mongolia and the central part of Tibetan plateau,but those are high in the northern and eastern parts of Tibetan plateau as well as the middle segment of Tianshan orogenic belt.Among China continent and its adjacent region,lithosphere is thicker than 180km beneath the Junggar Basin,the core part of Tarim Basin,and the eastern and central parts of Tibetan plateau,as well as the Qilianshan region;and it is 160km or more under the Upper Yangtze massif;however,the thickness of lithosphere in the central and western parts of Mongolia,and the eastern part of Kazakhstan is in the range of 140km to 180km.Lithosphere is thinner beneath the eastern margin and northern part of Tibetan plateau,as well as Issyk Lake of Kirghiztan in the middle segment of Tianshan orogenic belt(<140km).These geothermal modeling results are in good agreement with those of seismic tomography.Using the wet mantle rheology to represent the mechanical behaviour of upper mantle,it is found that the " crème brlée " model,i.e.,a strong crustal portion but a weak lithospheric mantle portion in vertical strength profile,approximates the lithospheric rheology for Tibetan plateau and its eastern margin,the middle segment of Tianshan orogenic belt,and the western and central parts of Mongolia.On the other hand," the jelly sandwich " model demonstrates the lithospheric mechanical strength of the Upper Yangtze massif(Sichuan Basin) and that of Junggar,Tarim Basins,and the eastern part of Kazakhstan.
引文
[1]任纪舜.中国及邻区1∶5000000大地构造图[M].北京:地质出版社,1999.
    [2]Wang Y.Active deformation style in south-eastern and north margins of Tibetan plateau[J].Earth Science Frontiers,2000,7(Suppl):267.
    [3]Wang Y.Heat flow pattern and lateral variations of litho-sphere strength in China mainland:Constraints on active de-formation[J].Physics of the Earth and Planetary Interiors,2001,126:121-146.
    [4]Wang Y.Comparison of element abundances between the ex-posed crust of the continent of China and the global average continental upper crust:Constraints on the crustal evolution and some speculations[J].Frontiers of Earth Science in Chi-na,2007,1:69-79.
    [5]Wang Y,Wang J Y,Xiong L P.Heat flow pattern in the mainland of China and its geodynamic significance[J].Acta Geologica Sinica:English Edition,2000,74:375-380.
    [6]Zhao W,Mechie J,Brown L D,et al.Crustal structure of central Tibet as derived from project INDEPTH wide-angle seismic data[J].Geophysical Journal International,2001,145:486-498.
    [7]Zhao J M,Liu G D,Lu Z X,et al.Lithospheric structure and dynamic processes of the Tianshan orogenic belt and the Junggar basin[J].Tectonophysics,2003,376:199-239.
    [8]Zhao J M,Yuan X H,Liu H B,et al.The boundary be-tween the Indian and Asian tectonic plates below Tibet[J].Proceedings of the National Academy of Sciences of the Unit-ed States,2010,107:11229-11233.
    [9]朱介寿,曹家敏,蔡学林,等.中国及相邻区域岩石圈结构及动力学意义[J].中国地质,2006,33(4):793-803.
    [10]Klemperer S L.Crustal flow in Tibet:Geophysical evidence for the physical state of Tibetan lithosphere,and inferred patterns of active flow[C]∥Law R D,Searle M P,Godin L.Channel Flow,Ductile Extrusion and Exhumation in Conti-nental Collision Zones.London:Geological Society,Special Publications,2006,268:39-70.
    [11]Wang Y,Cheng S H.Lithospheric thermo-mechanical strength map of China[C]∥Xie F R.Rock Stress and Earthquake.Proceedings of the Fifth International Symposium on In-Situ Rock Stress.London:CRC Press,2010:751-754.
    [12]Wang Y,Sun Z M.Crustal composition of China continent constrained from heat flow data and helium isotope ratio of underground fluid[J].Acta Geologica Sinica:English Edi-tion,2010,84:178-184.
    [13]Wang J Y,Huang S,Chen M.The map of terrestrial heat flow(1∶12000000)[C]∥Yuan X C.Atlas of Geophysics in China.Publication No.201of the International Lithosphere Program.Beijing:Geological Publishing House,1996:102-103.
    [14]Hu S,He L,Wang J.Heat flow in the continental area of China:A new data set[J].Earth and Planetary Science Let-ters,2000,179:407-419.
    [15]Lachenbruch A H,Morgan P.Continental extension,mag-matism and elevation:Formal relations and rules of thumb[J].Tectonophysics,1990,174:39-62.
    [16]Jia M Y,Yuan G T,Xiang A M.The map of isostatic gravi-ty anomalies in grid one by one degree(1∶14000000)[C]∥Ma X Y.Lithospheric Dynamics Atlas of China.Internation-al Lithosphere Program Publication No.0125.Beijing:China Cartographic Publishing House,1989:10.
    [17]Zuo Y,Liu L Y,Li Y Q.The map of isostatic gravity anom-aly(1∶12000000)[C]∥Yuan X C.Atlas of Geophysics in China.Publication No.201of the International Lithosphere Program.Beijing:Geological Publishing House,1996:30-31.
    [18]Chapman D S,Furlong K P.Thermal state of the continental lower crust[C]∥Fountain D M,Arculus R,Kay R W.Con-tinental Lower Crust.Amsterdam:Elsevier,1992:179-199.
    [19]汪洋,程素华.中国东部岩石圈热状态与流变学强度特征[J].大地构造与成矿学,2011,35(1):12-23.
    [20]Hearn T M,Wang S,Ni J F,et al.Uppermost mantle ve-locities beneath China and surrounding regions[J].Journal of Geophysical Research,2004,109:B11301.doi:10.1029/2003JB002874.
    [21]Liang C,Song X,Huang J.Tomographic inversion of Pn travel times in China[J].Journal of Geophysical Research,2004,109:B11304.doi:10.1029/2003JB002789.
    [22]McKenzie D,Jackson J,Priestley K.Thermal structure of o-ceanic and continental lithosphere[J].Earth and Planetary Science Letters,2005,233:337-349.
    [23]Artemieva I M,Mooney W D.Thermal thickness and evolu-tion of Precambrian lithosphere:A global study[J].Journal of Geophysical Research,2001,106:16387-16414.
    [24]McKenzie D,Bickle M J.The volume and composition of melt generated by extension of the lithosphere[J].Journal of Petrology,1988,29:625-679.
    [25]Jaupart C,Mareschal J C.The thermal structure and thick-ness of continental roots[J].Lithos,1999,48:93-114.
    [26]Jaupart C,Mareschal J C.Heat flow and thermal structure of the lithosphere[C]∥Watts A B.Treatise on Geophysics,Vol.6,Crust and Lithosphere Dynamics.Oxford:Elsevier,2007:217-251.
    [27]Ritzwoller M H,Levshin A L.Eurasian surface wave tomo-graphy:Group velocities[J].Journal of Geophysical Re-search,1998,103:4839-4878.
    [28]Villasenor A,Ritzwoller M H,Levshin A L,et al.Shear ve-locity structure of central Eurasia from inversion of surface wave velocities[J].Physics of the Earth and Planetary Interi-ors,2001,123:169-184.
    [29]Friederich W.The S-velocity structure of the East Asian mantle from inversion of shear and surface waveforms[J].Geophysical Journal International,2003,153:88-102.
    [30]Pasyanos A.A variable resolution surface wave dispersion study of Eurasia,North Africa,and surrounding regions[J].Journal of Geophysical Research,2005,110:B12301.doi:10.1029/2005JB003749.
    [31]Revenaugh J,Sipkin S A.Mantle discontinuity structure be-neath China[J].Journal of Geophysical Research,1994,99:21911-21927.
    [32]Curtis A,Woodhouse J H.Crust and upper mantle shear velocity structure beneath the Tibetan plateau and surrounding regions from interevent surface wave phase velocity inversion[J].Journal of Geophysical Research,1997,102:11789-11813.
    [33]Roecker S W,Sabiova T M,Vinnik L P,et al.Three-dimen-sional elastic wave velocity structure of the western and cen-tral Tien Shan[J].Journal of Geophysical Research,1993,98:15779-15795.
    [34]McNamara D E,Walter W R,Owens T J,et al.Upper man-tle velocity structure beneath the Tibetan Plateau from Pn travel-time tomography[J].Journal of Geophysical Re-search,1997,102:493-505.
    [35]McKenzie D,Priestley K.The influence of lithospheric thick-ness variations on continental evolution[J].Lithos,2008,102:1-11.
    [36]Agius M,Lebedev S.Surface-wave phase-velocity analysis across the Tibetan Plateau using broadband interstation dis-persion measurements[C]∥Abstracts of5th International Symposium on the Tibetan Plateau and24th Himalaya-Kara-korum-Tibet Workshop,2009:258.
    [37]Houseman G,Molnar P.Mechanisms of lithospheric rejuve-nation associated with continental orogeny[C]∥Miller J A,Holdsworth R E,Buick I S,et al.Continental Reactivation and Reworking.London:Geological Society,Special Publica-tions,2001,184:13-38.
    [38]Turner S P,Arnaud N,Liu J,et al.Post-collison,shosho-nitic volcanism on the Tibetan Plateau:Implications for con-vective thinning of the lithosphere and the source of ocean is-land basalt[J].Journal of Petrology,1996,37:45-71.
    [39]Ranalli G.Rheology of the Earth[M].2nd ed.London:Chapman and Hall,1995:1-413.
    [40]Mackwell S J,Zimmerman M E,Kohlstedt D L.High-tem-perature deformation of dry diabase with applications to tec-tonics on Venus[J].Journal of Geophysical Research,1998,103:975-984.
    [41]Chopra P N,Paterson M S.The role of water in the deform-ation of dunite[J].Journal of Geophysical Research,1984,89:7861-7876.
    [42]Maggi A,Jackson J A,McKenzie D,et al.Earthquake focal depths,effective elastic thickness,and the strength of the continental lithosphere[J].Geology,2000,28:495-498.
    [43]Jackson J.Strength of the continental lithosphere:Time to aban-don the jelly sandwich[J]?GSA Today,2002,12:4-10.
    [44]Afonso J C,Ranalli G.Crustal and mantle strengths in con-tinental lithosphere:Is the jelly sandwich model obsolete[J]?Tectonophysics,2004,394:221-232.
    [45]Burov E B,Watts A B.The long-term strength of continen-tal lithosphere:“Jelly sandwich”or“crème brlée”[J]?GSA Today,2006,16:4-10.
    [46]Watts A B,Burov E B.Lithospheric strength and its rela-tionship to the elastic and seismogenic layer thickness[J].Earth and Planetary Science Letters,2003,213:113-131.
    [47]Vauchez A,Tommasi A,Barruol G.Rheological heterogene-ity,mechanical anisotropy and deformation of the continental lithosphere[J].Tectonophysics,1998,296:61-86.
    [48]马宗晋,杜品仁,洪汉净.地球构造与动力学[M].广州:广东科技出版社,2003:1-564.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心