利用地球简正模耦合研究上地幔过渡区方位各向异性
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
地震方位各向异性广泛存在于地球上地幔中,目前利用地震体波或面波分析研究上地幔各向异性的地球物理方法有很多种,但是由于各自的局限性均难以分析上地幔过渡区中的各向异性特征.方位各向异性可导致球形简正模和环形简正模之间发生耦合.地球长周期自由振荡的简正模可深入到上地幔过渡区.本文利用各向异性地球模型计算各向异性简正模耦合深度敏感核,表明长周期(250~400s)简正模各向异性耦合(如0S20-0T21和0S25-0T25)的敏感度峰值在400~600km之间.在不受地球自转影响的台站,如位于南极极点的QSPA站,仍然可以观测到强烈的简正模耦合现象.本文的研究表明:只有在地震观测台站靠近长周期球形振荡的节点时,才能在其观测数据中观测到各向异性耦合现象,许多各向异性耦合在震后18~24h期间最强,并可导致垂直方向的环形简正模的振幅大于球形耦合简正模的振幅.这些特征是在地震观测数据中寻找各向异性耦合的重要线索.长周期简正模的方位各向异性耦合为我们提供了一个新的认识上地幔过渡区各向异性的窗口.
The azimuthal anisotropy in the upper mantle can be determined by studying body wave data or surface wave data,but it is hard to use these studies to find out evidence for azimuthal anisotropy in the transition zone.Some long period normal modes of the earth free oscillations penetrate into the transition zone.According to our estimation of coupling sensitivity kernels using a model of mantle anisotropy,the coupling between fundamental spheroidal and toroidal modes in 250~400 s,such as 0S20-0T21 and 0S25-0T25,shows peak sensitivity to azimuthal anisotropy at 400~600 km depth.Different from normal mode coupling caused by Earth rotation,the anisotropic coupling modes can be clearly identified only at stations near nodes of spherical harmonics,and most of them have high resolution on 18~24-hour vertical component spectra.Anisotropic coupling is so strong that sometimes the amplitude of coupled toroidal mode is even larger than that of coupled spheroidal mode on vertical component.These characteristics provide us important clues to distinguish anisotropic coupling from rotational coupling in seismic observations.Anisotropic coupling of long-period normal modes is an important signal that determines azimuthal anisotropy structures in the transition zone of the upper mantle.
引文
[1]Hess H H.Seismic anisotropy of the uppermost mantle underoceans.Nature,1964,203(4945):629-631.
    [2]刘启元,邵学钟.天然地震PS转换波动力学特征的初步研究.地球物理学报,1985,28(3):291-302.Liu Q Y,Shao X Z.Study on the dynamic characteristics ofPS converted waves.Chinese J.Geophys.(Acta GeophysicaSinica)(in Chinese),1985,28(3):291-302.
    [3]Cassidy J F.Numerical experiments in broadband receiverfunction analysis.Bull.Seism.Soc.Am.,1992,82(3):1453-1474.
    [4]Savage M K.Lower crustal anisotropy or dipping boundaries?Effects on receiver functions and a case study in NewZealand.J.Geophys.Res.,1998,103(B7):15069-15087.
    [5]Ando M.ScS polarization anisotropy around the PacificOcean.J.Physics Earth,1984,32(3):179-196.
    [6]Vinnik L P,Kind R,Kosarev G L,et al.Azimuthalanisotropy in the lithosphere from observations of long-periodS-wave.Geophys.J.Int.,1989,99(3):549-559.
    [7]Silver P G,Chan W W.Shear wave splitting and subcontinentalmantle deformation.J.Geophys.Res.,1991,96(B10):16429-16454.
    [8]Savage M K.Seismic anisotropy and mantle deformation:What have we learned from shear wave splitting?Rev.Geophys.,1999,37(1):65-106.
    [9]Silver P G.Seismic anisotropy beneath the continents:Probing the depths of geology.Ann.Rev.Earth Planet.Sci.,1996,24(1):385-432.
    [10]Mitchell B J,Yu G K.Surface wave dispersion,regionalizedvelocity models,and anisotropy of the Pacific crust and uppermantle.Royal Astron.Soc.Geophys.J.,1980,63(2):497-514.
    [11]Park J,Yu Y.Seismic determination of elastic anisotropy andmantle flow.Science,1993,261(5125):1159-1162.
    [12]Yu Y,Park J.Hunting for azimuthal anisotropy beneath thePacific Ocean region.J.Geophys.Res.,1994,99(B8):15399-15422.
    [13]Park J,Levin V.Seismic anisotropy:Tracing plate dynamicsin the mantle.Science,2002,296(5567):485-489.
    [14]张中杰.地震各向异性研究进展.地球物理学进展,2002,17(2):281-293.Zhang Z J.A review of the seismic anisotropy and itsapplications.Progress in Geophysics(in Chinese),2002,17(2):281-293.
    [15]Davies G F.Dynamic Earth:Plates,Plumes and MantleConvection.Cambridge:Cambridge Univ.Press,1999.
    [16]Montagner J P,Kennett B L N.How to reconcile body-waveand normal-mode reference Earth models?Geophys.J.Int.,1996,125(1):229-248.
    [17]Vinnik L,Montagner J P.Shear wave splitting in the mantlePs phases.Geophys.Res.Lett.,1996,23(18):2449-2452.
    [18]Vinnik L,Chevrot S,Montagner J P.Seismic evidence offlow at the base of the upper mantle.Geophys.Res.Lett.,1998,25(11):1995-1998.
    [19]Fouch M J,Fischer K M.Mantle anisotropy beneathnorthwest Pacific subduction zones.J.Geophys.Res.,1996,101(B7):15987-16002.
    [20]Wookey J,Kendall J M,Barruol G.Mid-mantle deformationinferred from seismic anisotropy.Nature,2002,415(6873):777-780.
    [21]Trampert J,van Heijst H J.Global azimuthal anisotropy inthe transition zone.Science,2002,296(5571):1297-1299.
    [22]Park J.Free oscillations in an anisotropic earth:Path-integralasymptotics.Geophys.J.Int.,1997,129(2):399-411.
    [23]Masters G,Park J,Gilbert F.Observations of coupledspheroidal and toroidal modes.J.Geophys.Res.,1983,88(B12):10285-10298.
    [24]Dahlen F A,Tromp J.Theoretical Global Seismology.Princeton:Princeton University Press,1998:234-235.
    [25]Zürn W,Laske G,Widmer-Schnidrig R,et al.Observationof Coriolis coupled modes below 1mHz.Geophys.J.Int.,2000,143(1):113-118.
    [26]Park J.The sensitivity of seismic free oscillations to uppermantle anisotropy I.Zonal symmetry.J.Geophys.Res.,1993,98(B11):19933-19949.
    [27]Oda H,Ohnishi S.The effect of regional variation of latticepreferred orientation on surface waveforms.Geophys.J.Int.,2001,144(2):247-258.
    [28]Oda H.An attempt to estimate isotropic and anisotropiclateral structure of the Earth by spectral inversion incorporatingmixed coupling.Geophys.J.Int.,2005,160(2):667-682.
    [29]Backus G E.Possible forms of seismic anisotropy of theuppermost mantle under oceans.J.Geophys.Res.,1965,70(14):3429-3439.
    [30]Dziewonski A M,Anderson D L.Preliminary reference Earthmodel.Phys.Earth Planet.Inter.,1981,25(4):297-356.
    [31]Hu X G,Liu L T,Kroner C,et al.Observation of theseismic anisotropy effects on free oscillations below 4mHz.J.Geophys.Res.,2009,114:B07301,doi:10.1029/2008JB 005713.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心