中高频带地下水位对气压和固体潮的响应特征分析
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
我国前兆观测网络数字化改造的完成,使得对地震地下水位观测的孕震信息提取和干扰因素排除的研究拓宽至更广的频率范围,而对原有一些认识的重新考察也成为可能。本文从中国地震前兆台网挑选出数据质量较好的10个台站,分析各个台站2008年1月1日至5月11日的地下水位和气压资料及理论重力固体潮的频谱及其频域相关性特征,并分析了地下水位对气压响应的时移。结果表明,中高频带地下水位对气压的响应没有低频带好,两者相关性随周期的减小而减弱;含水层岩性对中高频带地下水位的气压和固体潮响应特征有较大影响,部分灰岩井在高频频段存在地下水位对气压响应异常的现象;时移效应对水位的气压响应整体特征影响不大,体现出两种信号自身的复杂性。
The completion of digital transformation of the precursor observation network in China has widened the frequency range for extracting related information of earthquake preparation and removing disturbance effects from groundwater,and make it possible for reviewing some of the previous knowledge.In this paper,we pick out 10 stations with high quality water level and barometric pressure data from the Center for Earthquake Precursory Observation Network of China,analyzed the spectrum characteristics and correlation of groundwater level,barometric pressure and earth tide of each station from Jan.1 to May 11,2008,and discussed the time-lapse of groundwater to barometric pressure.It shows that the response of groundwater level to barometric pressure in moderate to high frequency band is not as good as that in the low frequency band and their correlation decreases with the decline of periods;and the lithologic characters of the well-aquifer systems has a great impact on the response characteristics of groundwater level to barometric pressure and earth tide in moderate to high frequency band.In several limestone wells,there exists abnormal response characteristics of groundwater level to barometric pressure in high frequency band.The time-lapse of groundwater level to barometric pressure has little effect on the overall response characteristics,reflecting the complexity of the two signals themselves.
引文
[1]万迪堃,汪成民,李介成,等.地下水动态异常与地震短临预报[M].北京:地震出版社:1993.
    [2]汪成民,车用太,万迪堃,等.地下水微动态研究[M].北京:地震出版社:1988.
    [3]Roeloffs E A.Hydrologic precursors to earthquakes:A review[J].Pure Appl Geophys,1988,126:177-209.
    [4]Matsumoto N.Regression analysis for anomalous changes of ground water level due to earthquakes[J].Geophys Res Lett,1992,19(12):1 193-1 196.
    [5]张昭栋.高阶差分法求深井水位的气压系数[J].地震学刊,1986,(2):74-78.
    [6]王宝银.深井水位的气压、固体潮因素消除调和、付氏和逐步回归分析方法的应用[J].华北地震科学,1986,4(1):16-27.
    [7]Rasmussen T C,Crawford L A.Identifying and removing barometric pressure effects in confined andunconfined aquifers[J].Ground Water,1997,3(35):502-511.
    [8]Toll N J,Rasmussen T C.Removal of barometric pressure effects and earth tides from observed wa-ter levels[J].Ground Water,2007,1(45):101-105.
    [9]董守玉,贾化周,万迪堃,等.地下水位气压效应的基本特征、类型及机理[J].华北地震科学,1987,5(1):58-66.
    [10]殷积涛,汪成民.承压含水层的载荷效应和井孔水位的气压效应[J].中国地震,1988,4(2):39-48.
    [11]Quilty E G,Roeloffs E A.Removal of barometric pressure response from water level data[J].JGeophys Res,1991,96(B6):10 209-10 218.
    [12]晏锐,黄辅琼,陈颙.小波分析在井水位的气压和潮汐改正中的应用[J].中国地震,2007,22(2):204-210.
    [13]晏锐.汶川8.0级地震引起的中国大陆井水位同震响应特征分析[J].国际地震动态,2009,(4):32.
    [14]Berger J,Farrell W,Harrison J C,et al.ERTID 1:A program for calculation of solid Earth tides[M].Publication of the Scripps Institution of Oceanography,1987.
    [15]万永革.数字信号处理的MATLAB实现[M].北京:科学出版社:2007.
    [16]盛骤,谢式千,潘承毅.概率论与数理统计[M].北京:高等教育出版社:2001,129-131.
    [17]国家地震局地下水影响因素研究组.地震地下水动态及其影响因素分析[M].北京:地震出版社.1985.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心