相控建模技术在磨溪气田嘉二段气藏中的应用
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
磨溪气田嘉二段气藏为构造-岩性复合圈闭气藏,受沉积微相和早期成岩作用的双重控制,其储层非均质性强,气水关系复杂。要科学布署井位并制定合理的气藏开发方案,就必须弄清储层物性和地层水在三维空间的分布状态。通过储层特征研究,认为沉积微相是磨溪气田嘉二段储层发育的主控因素。相控建模是依据沉积相在时、空域的展布特征对沉积储层随机建模进行约束,所建模型能够真实地反映地下地质体的空间展布特征。因此,利用单井各储层段沉积相分析成果并结合三维地震构造解释成果,建立了各储层段的三维沉积微相模型,又进一步结合单井储层参数解释成果,在相控的前提下采用序贯高斯随机模拟方法,建立了各储层段三维属性模型。实钻资料表明模型具有较高的可信度,为气藏开发部署提供了技术支撑,研究成果对类似地区相控建模技术的应用具有一定的借鉴意义。
The Jia 2 member in Moxi Gas Field is a structure-lithology trap gas reservoir, with strong heterogeneity and complex gas-water relationship because of double control of sedimentary microfacies and early diagenesis. In order to deploy well site scientifically and make reasonable gas reservoir development adjustment scheme, it must make clear the three-dimensional distribution of the reservoir property and formation water. Reservoir characteristics research shows that sedimentary microfacies is the main controlling factor of reservoir development for Jia 2 member in Moxi Gas Field. Facies-controlled modeling is a method which restrains stochastic modeling based on sedimentary facies distribution characteristics in time and space domain, and the model can reflect the real spatial distribution characteristics of geologic body underground. This paper built three-dimensional sedimentary microfacies model based on facies analysis results of each well and three-dimensional seismic structure interpretation, and built every reservoir section three- dimensional petrophysical model by means of facies-controlled sequence Gaussian method based on reservoir property interpretation of each well. The real drilling data show that the model is with high reliability, it provides support for the development of gas field, and it has certain reference significance for the application of facies-controlled modeling in similar area.
引文
①谭秀成,刘德容,唐青松,等.磨溪构造嘉陵江组嘉二段气藏描述.西南油气田分公司川中油气矿,西南石油大学,2006.
    ②唐青松,赵宏利,阮基富,等.磨溪气田嘉二气藏精细描述.西南油气田分公司川中油气矿,2009.
    [1]吴胜和.储层建模[M].北京:石油工业出版社,1999:4-8.
    [2]计秉玉,赵国忠,王曙光,等.沉积相控制油藏地质建模技术[J].石油学报,2006,27(增刊):111-114.
    [3]宋子齐,伊军锋,庞振宇,等.三维储层地质建模与砂砾油层挖潜研究——以克拉玛依油田七中区、七东区克拉玛依组砾岩油藏为例[J].岩性油气藏,2007,19(4):99-105.
    [4]左毅,芦凤明,刘天鹤.相控建模技术在河流相复杂断块的应用[J].特种油气藏,2006,13(1):36-39.
    [5]段天向,刘晓梅,张亚军,等.Petrel建模中的几点认识[J].岩性油气藏,2007,19(2):102-107.
    [6]罗冰,邹娟,唐青松,等.磨溪气田嘉二段沉积相再认识[J].西南石油大学学报:自然科学版,2008,30(6):35-39.
    [7]司丽.曲流河点坝砂体地质建模及在水平井轨迹设计中的应用[J].岩性油气藏,2008,20(3):104-108.
    [8]欧阳明华,谢丛姣.精细油藏描述中的储层建模[J].新疆石油学院学报,2004,16(1):47-51.
    [9]卫平生,潘建国,谭开俊,等.地震储层学研究的“四步法”及其应用——以准噶尔盆地裂隙式喷发火成岩地震储层学研究为例[J].岩性油气藏,2012,24(6):10-16.
    [10]潘少伟,杨少春,杨柏,等.相控建模技术在江苏油田庄2断块中的应用[J].天然气地球科学,2009,20(6):935-940.
    [11]Deutsch C V.Geostatistical reservoir modeling[M].London:Oxford University Press,2002.
    [12]Damsleth E,Tzolsen C B,Omer K H,et al.A two stage stochastic model applied to NorthSea reservoir[R].SPE20605,1990.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心