承压井水位对含水层潮汐应力响应是否满足不排水条件的检验
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
以Hsieh模型为基础,提出了利用地震前后承压井水位潮汐分波的振幅及初始相位变化与否作为判断依据,检验井水位对含水层潮汐应力响应是否满足不排水条件的简便方法.将该判别方法用于分析会理川-06井和川-18井水位观测数据,利用Baytap-G潮汐分析方法分别计算出3次选定地震前后两井水位各分波(M2和O1)振幅和相位值.结果表明,川-06井水位潮汐响应先满足排水条件,其后地震波增强含水层导水(渗透)性使其满足不排水条件;川-18井由于导水系数较大,水位潮汐响应满足不排水条件.最后,结合理论潮汐应力潮汐分析结果,通过理论模型反推出震前和震后川-06井所揭露含水层的导水系数和Skempton系数,以及川-18井所揭露含水层的Skempton系数.
Based on the Hsieh model,a novel but simple method is proposed to examine whether the undrained condition is satisfied for the response of well water-level to tidal stress action,by monitoring the change of amplitude and initial phase of tidal constituents of the water-level.Water-levels of the well C(Chuan)-18 and C-06 are analyzed with the examination method.The chosen amplitude and initial phase of tidal constituents(M2 and O1)of the water-level in C(Chuan)-18 and C-06 well,and theoretical tidal stress before and after the earthquakes,are calculated with the Baytap-G tidal analysis method.The result shows that the tidal response of the water-level in C-06 well was drained at first,then it was in an undrained state because seismic waves enhanced the aquifer hydraulic conductivity(permeability).Due to high hydraulic conductivity,the tidal response of the water-level in C-18 well meets undrained state.Finally,we figure out the Skempton coefficient and the Transmissivity of the aquifer tapped by the C-06 well,as well as the Skempton coefficient of the aquifer tapped by the C-18 well.
引文
张昭栋,耿杰,高玉斌,张铸钢.1994a.菏泽5.9级地震前豫01井水位对气压和固体潮响应的变化[J].地震研究,17(2):164--170.
    张昭栋,郑金涵,陈建民,苏鸾声,王忠民,石荣会,王学聚,王梅.1994b.井水位阶变与含水层所受体应力之间的定量关系[J].地球物理学报,37(A02):222--229.
    张昭栋,刘庆国,耿杰.1999.由承压井水位动态反演水井含水层的应力变化[J].华南地震,19(1):37--42.
    张昭栋,刘庆国,刘涛,陈殿润.2001.由井水位资料反演大同-阳高6.1级地震前后应力场的动态演化过程[J].西北地震学报,23(1):66--68.
    张昭栋,郑金涵,耿杰,王忠民,魏焕.2002.地下水潮汐现象的物理机制和统一数学方程[J].地震地质,24(2):208--214.
    Boit M A.1941.General theory of three-dimensional consolidation[J].Appl Phys,12(02):155--164.
    Brodsky E E,Roeloffs E,Woodcock D,Gall I,Manga M.2003.A mechanismfor sustained groundwater pressure chan-ges induced by distant earthquakes[J].J Geophys Res,108(B8):2390.
    Cooper H H,Bredehoeft Jr J D,Papadopulos I S,Bennett R R.1965.The response of well-aquifer systems to seismicwaves[J].J Geophys Res,70(16):3915--3926.
    Doan ML,Brodsky E E,Prioul R,Signer C.2006.Tidal analysis of borehole pressure:Atutorial[R].SchlumbergerResearch Report:34--35.
    Elkhoury J E,Brodsky E E,Agnew D C.2006.Seismic waves increase permeability[J].Nature,441:1135--1138.
    Hamiel Y,Lyakhovsky V,Agnon A.2004.Coupled evolution of damage and porosity in poroelastic media:Theory andapplications to deformation of porous rocks[J].Geophys J Int,156:701--713.
    Hamiel Y,Lyakhovsky V,Agnon A.2005.Rock dilation,Nonlinear deformation,and pore pressure change under shear[J].Earth Planet Sci Lett,237(3-4):577--589.
    Hsieh P A,Bredehoeft J D,Farr J M.1987.Determination of aquifer transmissivity fromearthtide analysis[J].WaterResour Res,23(10):1824--1832.
    Ishiguro M,Tamura Y.1985.BAYTAP-Gin TI MSAC-84[J].Computer Science Monographs,22:56--117.
    Rice J R,Cleary MP.1976.Some basic stress diffusion solution for fluid-saturated elastic porous media with compressi-ble constituents[J].Rev Geophys Space Phys,14(2):227--241.
    Rhoads G H,Robinson E S.1979.Determination of aquifer parameters from well tides[J].J Geophys Res,84(B11):6071--6082.
    Roeloffs E.1996.Poroelastic techniques in the study of earthquakes-related hydrologic phenomena[J].Adv Geophys,37:135--195.
    Tamura Y.1987.A harmonic development of the tide-generating potential[J].Marees Terrestres Bulletin d'Informa-tions,99:6813--6855.
    Tamura Y,Sato T,Ooe M,Ishiguro M.1991.Aprocedure for tidal analysis with a bayesianinformation criterion[J].Geophys J Intl,104(3):507--516.
    Wang HF.2000.Theoryof Linear Poroelasticity with Applications to Geomechanics and Hydrogeology[M].Prince-ton:Princeton University Press:33--37.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心