含气砂岩AVO正演的半定量分析
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
孔隙度和含气饱和度是影响地震AVO响应的重要因素。采用AVO正演方法模拟不同储、盖层组合、不同孔隙度和含气饱和度时的地震反射,基于Zoeppritz方程的Shuey两参数近似式和Castagna砂岩分类方案,利用AVO截距和斜率属性的变化规律对储层含气性进行尝试性的定量分析。AVO正演模拟结果表明,含气砂岩顶面的AVO响应变化是孔隙度和含气饱和度的综合响应,且在孔隙度增大时以截距下降为主,在含气饱和度增大时以斜率下降为主;且当含气饱和度大于20%后,AVO响应变化减弱。当盖层阻抗低于储层骨架阻抗时,随孔隙度和含气饱和度的增大AVO响应类型由Ⅱ类过渡为Ⅲ类;当储、盖层骨架阻抗相当时,其类型由Ⅲ类过渡为Ⅳ类;当盖层阻抗高于储层骨架阻抗时,AVO响应主要为Ⅳ类。
Porosity and gas saturation play a significant role on AVO responses.We use in this paper AVO forward modeling to create the seismic reflection for various assemblages of seal and reservoir with various porosity and gas saturation.Then we perform a quantitative analysis of gas saturation by the variations of AVO intercept and gradient derived from Shuey's two-term approximation and Castagna's classification.It is demonstrated that both sand porosity and its gas saturation impact on AVO responses:①AVO intercept decreases with porosity increasing,and gradient decreases with gas saturation increasing.②AVO response varies weakly while gas saturation is bigger than 20%.AVO responses of gas bearing sand transits from classⅡto classⅢ when the acoustic impedance of seal is lower than the reservoir matrix impedance,and from classⅢto classⅣ when the acoustic impedance of seal and the reservoir matrix impedance are equivalent,classⅣ occupies a dominant position when the acoustic impedance of seal is higher than the reservoir matrix impedance.
引文
[1]Kelly M C,Skidmore C M,Raymond D.Quantita-tive AVO Analysis.SEG Technical Program Ex-panded Abstracts,2005,24:273~276
    [2]Aki K,Richards P.Quantitative Seismology:Theo-ry and Method.W H Freeman Company,NewYork,1980
    [3]魏嘉.定量地震解释离我们有多远勘探地球物理进展,2006,29(6):433~437Wei Jia.How far do we come to quantitative inter-pretationProgress in Exploration Geophysics,2006,29(6):433~437
    [4]Yilmaz.Seismic Data Analysis:Processing,In-version,and Interpretation of Seismic Data.W HFreeman Company,New York,2001
    [5]张广智,郑静静等.基于入射角的AVO近似及属性提取.石油地球物理勘探,2012,47(4):578~583Zhang Guangzhi,Zheng Jingjing et al.AVO approxi-mation and attribute extraction based on the incidentangle.OGP,2012,47(4):578~583
    [6]尚新民,李红梅,韩文功等.基于岩石物理与地震正演的AVO分析方法.天然气工业,2008,28(2):64~66Shang Xinmin,Li Hongmei,Han Wengong et al.AVO analysis technology based on petrophysics andseismic forward modeling.Natural Gas Industry,2008,28(2):64~66
    [7]Shuey R T.A simplification of the Zoeppritz equa-tions.Geophysics,1985,50(4):609~634
    [8]Castagna J P,Swan H W.Principles of AVO cross-plotting.The Leading Edge,1997,16(4):337~342
    [9]Sams M.Yet another perspective on AVO crossplot-ting.The Leading Edge,1998,17(7):911~917
    [10]Tad M S,Carl H S,Chandra S R.Gassmann fluidsubstitutions:A tutorial.Geophysics,2003,68(2):430~440
    [11]Gassmann F.Elastic waves through a packing ofspheres.Geophysics,1951,16(4):673~685
    [12]Castagna J P.Framework for AVO gradient and in-tercept interpretation.Geophysics,1998,63(3):948~956
    [13]潘仁芳.AVO的内涵与外延.石油天然气学报,2006,28(2):50~55Pan Renfang.Intension and extension of AVO.Journalof Oil and Gas Technology,2006,28(2):50~55
    [14]宋建国,王艳香,乔玉雷等.AVO技术进展.地球物理学进展,2008,23(2):508~514Song Jianguo,Wang Yanxiang,Qiao Yulei et al.Ad-vances in AVO technique.Progress in Geophysics,2008,23(2):508~514
    [15]周义军,李喜瑞.敏感角度弹性阻抗在流体预测中的应用.石油地球物理勘探,2010,45(5):710~713Zhou Yijun,Li Xirui.Application of sensitive angle e-lastic impedance in fluid prediction.OGP,2010,45(5):710~713

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心