断层同震滑动的实验模拟——岩石高速摩擦实验的意义、方法与研究进展
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
岩石摩擦实验是断层力学和震源物理实验研究中主要的手段之一.传统低速率的岩石摩擦实验与以之为基础建立的速率状态变量摩擦本构关系理论体系,对于认识断层摩擦滑动稳定性和地震成核等地震成因机制问题具有重要意义.近20年来,断层力学领域兴起了用于模拟断层同震动态滑动的岩石高速摩擦实验.这种新的实验模拟方法揭示出断层同震滑动存在明显的摩擦生热效应,断层的力学性状主要表现为显著的滑移弱化和速度弱化,断层带物质在断层高速滑移过程中经历了各种复杂的物理化学变化.这些研究成果对于认识和评估断层同震弱化机制、断层带强度、地震能量分配、断层破裂模式、断层愈合等问题均具有重要启示.本文对岩石高速摩擦实验的意义、方法与研究进展进行了总结,提出了目前的前沿性问题和值得开展的工作.
Rock frictional experiment is one of the main approaches in fault mechanics research and experimental studies of physics of earthquake foci.The traditional low-velocity frictional experiment and theoretical system of rate-and state-variable friction law which is based on those experimental work,are of great significance to understand stability of fault frictional sliding,earthquake nucleation and other issues related to earthquake mechanism.In the recent 20 years,high-velocity frictional experiment has emerged to simulate dynamic motion of coseismic fault in the research field of fault mechanics.This new experimental simulation method reveals that coseismic fault sliding causes obvious frictional heating.The fault mechanical behavior in this case is characterized by notable slip weakening and velocity weakening,and fault zone materials undergo a variety of complicated physical-chemical changes during high-velocity sliding.These research findings have significant implications for understanding and evaluating dynamic fault weakening mechanisms,faults zone strength,earthquake energy budgets,fault rupture mode,fault healing,etc.This paper summarizes the significance,technological method and research progress of high-velocity frictional experiment,and proposes several frontier issues and worthwhile research work.
引文
[1]Brace W F,Byerlee J D.Stick-slip as a mechanism for earthquakes[J].Science,1966,153(3739):990-992.
    [2]Scholz C H.The Mechanics of Earthquakes and Faulting[M].New York:Cambridge University Press,1990.
    [3]Rabinowicz E.The nature of the static and kinetic coefficientsof friction[J].Journal of Applied Physics,1951,22(11):1373-1379.
    [4]Bowden F P,Tabor D.The Friction and Lubrication of Solids,Part I[M].Oxford:Clarendon Press,1950.
    [5]Bowden F P,Tabor D.The Friction and Lubrication of Solids,Part II[M].Oxford:Clarendon Press,1964.
    [6]Byerlee J.Friction of rocks[J].Pure and Applied Geophysics,1978,116(4-5):615-626.
    [7]Goetze C,Evans B.Stress and temperature in the bendinglithosphere as constrained by experimental rock mechanics[J].Geophysical Journal International,1979,59(3):463-478.
    [8]Brace W F,Kohlstedt D L.Limits on lithospheric stress imposedby laboratory experiments[J].Journal of GeophysicalResearch,1980,85(B11):6248-6252.
    [9]Ida Y.Cohesive force across the tip of a longitudinal-shear crackand griffiths specific surface energy[J].Journal ofGeophysical Research,1972,77(20):3796-3805.
    [10]Palmer A C,Rice J R.The growth of slip surfaces in theprogressive failure of over-consolidated clay[J].Proceedingsof the Royal Society of London.Series A,Mathematical andPhysical Sciences,1973,332(1591):527-548.
    [11]Ohnaka M,Kuwahara Y,Yamamoto K.Constitutive relationsbetween dynamic physical parameters near a tip of thepropagating slip zone during stick-slip shear failure[J].Tectonophysics,1987,144(1-3):109-125.
    [12]Dieterich J H.Time-dependent friction in rocks[J].Journalof Geophysical Research,1972,77(20):3690-3697.
    [13]Scholz C H,Engelder J T.The role of asperity indentationand ploughing in rock friction-I:asperity creep and stick-slip[J].International Journal of Rock Mechanics and MiningSciences&Geomechanics Abstracts,1976,13(5):149-154.
    [14]Dieterich J H.Time-dependent friction and the mechanics ofstick-slip[J].Pure and Applied Geophysics,1978,116(4-5):790-806.
    [15]Dieterich J H.Modeling of rock friction:1.Experimental resultsand constitutive equations[J].Journal of GeophysicalResearch,1979,84(B5):2161-2168.
    [16]Dieterich J H.Constitutive properties of faults with simulatedgouge[A]//Carter N L,Friedman M,Logan J M,et al.eds.Mechanical Behavior of crustal rocks,GeophysicalMonograph Vol.24[C].Washington:American GeophysicalUnion,1981:103-120.
    [17]Ruina A.Slip instability and state variable friction laws[J].Journal of Geophysical Research,1983,88(B12):10359-10370.
    [18]Linker M F,Dieterich J H.Effects of variable normal stresson rock friction:observations and constitutive equations[J].Journal of Geophysical Research,1992,97(B4):4923-4940.
    [19]Marone C.Laboratory-derived friction laws and their applicationto seismic faulting[J].Annual Review of Earth and PlanetarySciences,1998,26(1):643-696.
    [20]何昌荣.两种摩擦本构关系的对比研究[J].地震地质,1999,21(2):137-146.He C R.Comparing two types of rate and state dependentfriction laws[J].Seismology and Geology(in Chinese),1999,21(2):137-146.
    [21]Heaton T H.Evidence for and implications of self-healingpulses of slip in earthquake rupture[J].Physics of the Earthand Planetary Interiors,1990,64(1):1-20.
    [22]Perrin G,Rice J R,Zheng G T.Self-healing slip pulse on africtional surface[J].Journal of the Mechanics and Physics ofSolids,1995,43(9):1461-1495.
    [23]Rice J R,Ruina A L.Stability of steady frictional slipping[J].Journal of Applied Mechanics,1983,50(2):343-349.
    [24]Gu J C,Rice J R,Ruina A L,et al.Slip motion and stabilityof a single degree of freedom elastic system with rate andstate dependent friction[J].Journal of the Mechanics andPhysics of Solids,1984,32(3):167-196.
    [25]Dieterich J H.A model for the nucleation of earthquake slip[A]//Das S,Boatwright J,Scholz C H eds.EarthquakeSource Mechanics,Geophysical Monograph,Vol.37[C].Washington:American Geophysical Union,1986:37-47.
    [26]Dieterich J H.Earthquake nucleation on faults with rate-andstate-dependent strength[J].Tectonophysics,1992,211(1-4):115-134.
    [27]Tse S T,Rice J R.Crustal earthquake instability in relationto the depth variation of frictional slip properties[J].Journalof Geophysical Research,1986,91(B9):9452-9472.
    [28]Green II H W,Houston H.The mechanics of deep earthquakes[J].Annual Review of Earth and Planetary Sciences,1995,23(1):169-214.
    [29]Tanikawa W,Shimamoto T.Frictional and transport propertiesof the Chelungpu fault from shallow borehole data and theircorrelation with seismic behavior during the 1999Chi-Chiearthquake[J].Journal of Geophysical Research,2009,114(B1):B01402.
    [30]Faulkner D R,Mitchell T M,Behnsen J,et al.Stuck in themud?Earthquake nucleation and propagation throughaccretionary forearcs[J].Geophysical Research Letters,2011,38(18):L18303.
    [31]Noda H,Lapusta N.Stable creeping fault segments can becomedestructive as a result of dynamic weakening[J].Nature,2013,493(7433):518-521.
    [32]Shimamoto T,Tsutsumi A.A new rotary-shear high-speedfrictional testing machine:its basic design and scope ofresearch[J].J.Tectonic Res.Group of Japan,1994,39:65-78.
    [33]Goldsby D L,Tullis T E.Low frictional strength of quartzrocks at subseismic slip rates[J].Geophysical ResearchLetters,2002,29(17):25-1-25-4.
    [34]Spray J G.Artificial generation of pseudotachylyte using frictionwelding apparatus:simulation of melting on a fault plane[J].Journal of Structural Geology,1987,9(1):49-60.
    [35]Tullis T E,Weeks J D.Constitutive behavior and stability offrictional sliding of granite[J].Pure and Applied Geophysics,1986,124(3):383-414.
    [36]Di Toro G,Goldsby D L,Tullis T E.Friction falls towardszero in quartz rock as slip velocity approaches seismic rates[J].Nature,2004,427(6973):436-439.
    [37]Goldsby D L,Tullis T E.Flash heating leads to low frictionalstrength of crustal rocks at earthquake slip rates[J].Science,2011,334(6053):216-218.
    [38]Hirose T,Shimamoto T.Growth of molten zone as a mechanismof slip weakening of simulated faults in gabbro duringfrictional melting[J].Journal of Geophysical Research,2005,110(B5):B05202.
    [39]Di Toro G,Niemeijer A,Tripoli A,et al.From field geologyto earthquake simulation:a new state-of-the-art tool toinvestigate rock friction during the seismic cycle(SHIVA)[J].Rendiconti Lincei,2010,21(1):95-114.
    [40]Reches Z e,Lockner D A.Fault weakening and earthquakeinstability by powder lubrication[J].Nature,2010,467(7314):452-455.
    [41]Ohtomo Y,Shimamoto T.Significance of thermal fracturingin the generation of fault gouge during rapid fault motion:Anexperimental verification[J].J.Tectonic Res.Group ofJapan,1994,39:135-144.
    [42]Di Toro G,Hirose T,Nielsen S,et al.Relating high-velocityrock-friction experiments to coseismic slip in the presence ofmelts[A]//Abercrombie R,McGarr A,Di toro G,et al.eds.Radiated Energy and the Physics of EarthquakeFaulting,Geophysical Monograph,Vol.170[C].Washington:American Geophysical Union:2006:121-134.
    [43]Mizoguchi K,Shimamoto T.Dramatic slip weakening of Nojimafault gouge at high-velocities and its implication for dynamicfault motion[A]//American Geophysical Union,FallMeeting[C].San Francisco,2004:T23A-0559.
    [44]Mizoguchi K,Hirose T,Shimamoto T,et al.Reconstructionof seismic faulting by high-velocity friction experiments:Anexample of the 1995 Kobe earthquake[J].GeophysicalResearch Letters,2007,34(1):L01308.
    [45]Del Gaudio P,Di Toro G,Han R,et al.Frictional melting ofperidotite and seismic slip[J].Journal of GeophysicalResearch,2009,114(B6):B06306.
    [46]Han R,Shimamoto T,Hirose T,et al.Ultralow friction ofcarbonate faults caused by thermal decomposition[J].Science,2007,316(5826):878-881.
    [47]Hirose T,Bystricky M.Extreme dynamic weakening of faultsduring dehydration by coseismic shear heating[J].Geophysical Research Letters,2007,34(14):L14311.
    [48]Jeffreys H.On the mechanics of faulting[J].GeologicalMagazine,1942,79(5):291-295.
    [49]McKenzie D,Brune J N.Melting on fault planes during largeearthquakes[J].Geophysical Journal International,1972,29(1):65-78.
    [50]Sibson R H.Generation of pseudotachylyte by ancient seismicfaulting[J].Geophysical Journal International,1975,43(3):775-794.
    [51]Wenk H R.Are pseudotachylites products of fracture or fusion?[J].Geology,1978,6(8):507-511.
    [52]Spray J G.Pseudotachylyte controversy:Fact or friction?[J].Geology,1995,23(12):1119-1122.
    [53]Tsutsumi A,Shimamoto T.High-velocity frictional properties ofgabbro[J].Geophysical Research Letters,1997,24(6):699-702.
    [54]Fialko Y,Khazan Y.Fusion by earthquake fault friction:Stick or slip?[J].Journal of Geophysical Research,2005,110(B2):B12407.
    [55]Di Toro G,Hirose T,Nielsen S,et al.Natural and experimentalevidence of melt lubrication of faults during earthquakes[J].Science,2006,311(5761):647-649.
    [56]Ujiie K,Tsutsumi A,Fialko Y,et al.Experimental investigationof frictional melting of argillite at high slip rates:Implicationsfor seismic slip in subduction-accretion complexes[J].Journalof Geophysical Research,2009,114(B4):B04308.
    [57]Sirono S,Satomi K,Watanabe S.Numerical simulations offrictional melting:Small dependence of shear stress drop onviscosity parameters[J].Journal of Geophysical Research,2006,111(B6):B06309.
    [58]Tsutsumi A,Mizoguchi K.Effect of melt squeezing rate onshear stress along a simulated fault in gabbro during frictionalmelting[J].Geophysical Research Letters,2007,34(21):L21306.
    [59]Nielsen S,Di Toro G,Hirose T,et al.Frictional melt andseismic slip[J].Journal of Geophysical Research,2008,113(B1):B01308.
    [60]Nielsen S,Mosca P,Giberti G,et al.On the transientbehavior of frictional melt during seismic slip[J].Journal ofGeophysical Research,2010,115(B10):B10301.
    [61]Sibson R H,Toy V G.The habitat of fault-generatedpseudotachylyte:presence vs.absence of friction-melt[A]//Abercrombiec R ed.Radiated Energy and the Physics ofEarthquake Faulting,Geophysical Monograph,Vol.170[C].Washington:American Geophysical Union,2006:153-166.
    [62]Roig Silva C,Goldsby D,Di Toro G,et al.The role of silicacontent in dynamic fault weakening due to gel lubrication[A].//American Geophysical Union,Fall Meeting[C],2004,85(47).
    [63]Di Toro G,Han R,Hirose T,et al.Fault lubrication duringearthquakes[J].Nature,2011,471(7339):494-498.
    [64]Mizoguchi K,Hirose T,Shimamoto T,et al.Moisture-related weakening and strengthening of a fault activated atseismic slip rates[J].Geophysical Research Letters,2006,33(16):L16319.
    [65]OHara K,Mizoguchi K,Shimamoto T,et al.Experimentalfrictional heating of coal gouge at seismic slip rates:Evidencefor devolatilization and thermal pressurization of gouge fluids[J].Tectonophysics,2006,424(1-2):109-118.
    [66]Han R,Shimamoto T,Ando J-i,et al.Seismic slip record incarbonate-bearing fault zones:An insight from high-velocityfriction experiments on siderite gouge[J].Geology,2007,35(12):1131-1134.
    [67]Han R,Hirose T,Shimamoto T.Strong velocity weakeningand powder lubrication of simulated carbonate faults atseismic slip rates[J].Journal of Geophysical Research,2010,115(B3):B03412.
    [68]De Paola N,Hirose T,Mitchell T,et al.Fault lubricationand earthquake propagation in thermally unstable rocks[J].Geology,2011,39(1):35-38.
    [69]Hirono T,Lin W R,Yeh E C,et al.High magnetic susceptibilityof fault gouge within Taiwan Chelungpu fault:Nondestructive continuous measurements of physical andchemical properties in fault rocks recovered from Hole B,TCDP[J].Geophysical Research Letters,2006,33(15):L15303.
    [70]Viti C,Hirose T.Thermal decomposition of serpentine duringcoseismic faulting:Nanostructures and mineral reactions[J].Journal of Structural Geology,2010,32(10):1476-1484.
    [71]Brantut N,Schubnel A,Rouzaud J N,et al.High-velocityfrictional properties of a clay-bearing fault gouge andimplications for earthquake mechanics[J].Journal ofGeophysical Research,2008,113(B10):B10401.
    [72]Brantut N,Han R,Shimamoto T,et al.Fast slip with inhibitedtemperature rise due to mineral dehydration:Evidence fromexperiments on gypsum[J].Geology,2011,39(1):59-62.
    [73]Oohashi K,Hirose T,Shimamoto T.Shear-induced graphitizationof carbonaceous materials during seismic fault motion:experiments and possible implications for fault mechanics[J].Journal of Structural Geology,2011,33(6):1122-1134.
    [74]Oohashi K,Hirose T,Kobayashi K,et al.The occurrenceof graphite-bearing fault rocks in the Atotsugawa faultsystem,Japan:origins and implications for fault creep[J].Journal of Structural Geology,2012,38:39-50.
    [75]Sawai M,Shimamoto T,Togo T.Reduction in BET surfacearea of Nojima fault gouge with seismic slip and itsimplication for the fracture energy of earthquakes[J].Journalof Structural Geology,2012,38:117-138.
    [76]Togo T,Shimamoto T.Energy partition for grain crushing inquartz gouge during subseismic to seismic fault motion:Anexperimental study[J].Journal of Structural Geology,2012,38:139-155.
    [77]Hirose T,Kawagucci S,Suzuki K.Mechanoradical H2generationduring simulated faulting:Implications for an earthquake-driven subsurface biosphere[J].Geophysical ResearchLetters,2011,38(17):L17303.
    [78]Mizoguchi K,Hirose T,Shimamoto T,et al.High-velocityfrictional behavior and microstructure evolution of fault gougeobtained from Nojima fault,southwest Japan[J].Tectonophysics,2009,471(3-4):285-296.
    [79]Kitajima H,Chester J S,Chester F M,et al.High-speedfriction of disaggregated ultracataclasite in rotary shear:Characterization of frictional heating,mechanical behavior,and microstructure evolution[J].Journal of GeophysicalResearch,2010,115(B8):B08408.
    [80]Boutareaud S,Calugaru D-G,Han R,eta l.Clay-clast aggregates:A new textural evidence for seismic fault sliding?[J].Geophysical Research Letters,2008,35(5):L05302.
    [81]Boutareaud S,Boullier A-M,Andréani M,et al.Clay clastaggregates in gouges:New textural evidence for seismicfaulting[J].Journal of Geophysical Research,2010,115(B2):B02408.
    [82]Han R,Hirose T.Clay-clast aggregates in fault gouge:Anunequivocal indicator of seismic faulting at shallow depths?[J].Journal of Structural Geology,2012,43:92-99.
    [83]Ujiie K,Tsutsumi A.High-velocity frictional properties ofclay-rich fault gouge in a megasplay fault zone,Nankaisubduction zone[J].Geophysical Research Letters,2010,37(24):L24310.
    [84]Kim J W,Ree J H,Han R,et al.Experimental evidence forthe simultaneous formation of pseudotachylyte and mylonitein the brittle regime[J].Geology,2010,38(12):1143-1146.
    [85]Togo T,Shimamoto T,Ma S L,et al.High-velocityfrictional behavior of Longmenshan fault gouge fromHongkou outcrop and its implications for dynamic weakeningof fault during the 2008 Wenchuan earthquake[J].Earthquake Science,2011,24(3):267-281.
    [86]Ferri F,Di Toro G,Hirose T,et al.Evidence of thermalpressurization in high-velocity friction experiments onsmectite-rich gouges[J].Terra Nova,2010,22(5):347-353.
    [87]Sone H,Shimamoto T.Frictional resistance of faults duringaccelerating and decelerating earthquake slip[J].NatureGeoscience,2009,2(10):705-708.
    [88]Hubbert M K,Rubey W W.Role of fluid pressure in mechanicsof overthrust faulting:I.mechanics of fluid-filled poroussolids and its application to overthrust faulting[J].GeologicalSociety of America Bulletin,1959,70(2):115-166.
    [89]Rice J R.Chapter 20Fault stress states,pore pressuredistributions,and the weakness of the San Andreas fault[A]//Evans B,Wong T F eds.Fault Mechanics andTransport Properties of Rocks,International Geophysics,Vol.51[C].New York,the USA,1992:475-504.
    [90]Wu F T,Blatter L,Roberson H.Clay gouges in the SanAndreas Fault System and their possible implications[J].Pure and Applied Geophysics,1975,113(1):87-95.
    [91]Moore D E,Rymer M J.Talc-bearing serpentinite and thecreeping section of the San Andreas fault[J].Nature,2007,448(7155):795-797.
    [92]Lockner D A,Morrow C,Moore D,et al.Low strength ofdeep San Andreas fault gouge from SAFOD core[J].Nature,2011,472(7341):82-85.
    [93]Sibson R H.Interactions between temperature and pore-fluidpressure during earthquake faulting and a mechanism forpartial or total stress relief[J].Nature,1973,243(126):66-68.
    [94]Lachenbruch A H.Frictional heating,fluid pressure,and theresistance to fault motion[J].Journal of GeophysicalResearch,1980,85(B11):6097-6112.
    [95]Mase C W,Smith L.Effects of frictional heating on thethermal,hydrologic,and mechanical response of a fault[J].Journal of Geophysical Research,1987,92(B7):6249-6272.
    [96]Melosh H J.Dynamical weakening of faults by acoustic fluidization[J].Nature,1996,379(6566):601-606.
    [97]Rice J R.Heating and weakening of faults during earthquakeslip[J].Journal of Geophysical Research,2006,111(B5):B05311.
    [98]Brune J N,Brown S,Johnson P A.Rupture mechanism andinterface separation in foam rubber models of earthquakes:apossible solution to the heat flow paradox and the paradox oflarge overthrusts[J].Tectonophysics,1993,218(1-3):59-67.
    [99]Brodsky E E,Kanamori H.Elastohydrodynamic lubricationof faults[J].Journal of Geophysical Research,2001,106(B8):16357-16374.
    [100]Tullis T E.Friction of Rock at Earthquake Slip Rates.Treatiseon Geophysics[M].Amsterdam:Elsevier,2007.131-152.
    [101]Beeler N M,Tullis T E,Goldsby D L.Constitutive relationshipsand physical basis of fault strength due to flash heating[J].Journal of Geophysical Research,2008,113(B1):B01401.
    [102]Rempel A W,Rice J R.Thermal pressurization and onset ofmelting in fault zones[J].Journal of Geophysical Research,2006,111:B09314.
    [103]Wibberley C A J,Shimamoto T.Internal structure andpermeability of major strike-slip fault zones:the MedianTectonic Line in Mie Prefecture,Southwest Japan[J].Journal of Structural Geology,2003,25(1):59-78.
    [104]Wibberley C J,Shimamoto T.Earthquake slip weakeningand asperities explained by thermal pressurization[J].Nature,2005,436(7051):689-692.
    [105]陈建业,杨晓松,党嘉祥等.汶川地震断层带结构及渗透率[J].地球物理学报,2011,54(7):1805-1816.Chen J Y,Yang X S,Dang J X,et al.Internal structureand permeability of Wenchuan earthquake fault[J].ChineseJ.Geophys.(in Chinese),2011,54(7):1805-1816.
    [106]Brantut N,Schubnel A,Corvisier J,et al.Thermochemicalpressurization of faults during coseismic slip[J].Journal ofGeophysical Research,2010,115(B5):B05314.
    [107]Han R,Hirose T,Shimamoto T,et al.Granular nanoparticleslubricate faults during seismic slip[J].Geology,2011,39(6):599-602.
    [108]Wornyoh E Y A,Jasti V K,Higgs C F,et al.A review ofdry particulate lubrication:powder and granular materials[J].Journal of Tribology,2007,129(2):438-449.
    [109]Ide S,Takeo M.Determination of constitutive relations offault slip based on seismic wave analysis[J].Journal ofGeophysical Research,1997,102(B12):27379-27391.
    [110]Tinti E,Spudich P,Cocco M.Earthquake fracture energyinferred from kinematic rupture models on extended faults[J].Journal of Geophysical Research,2005,110(B12):B12303.
    [111]Scholz C H.The critical slip distance for seismic faulting[J].Nature,1988,336(6201):761-763.
    [112]Marone C,Kilgore B.Scaling of the critical slip distance forseismic faulting with shear strain in fault zones[J].Nature,1993,362(6421):618-621.
    [113]Hirose T,Shimamoto T.Fractal dimension of molten surfacesas a possible parameter to infer the slip-weakening distanceof faults from natural pseudotachylytes[J].Journal ofStructural Geology,2003,25(10):1569-1574.
    [114]Hirose T,Shimamoto T.Slip-weakening distance of faultsduring frictional melting as inferred from experimental andnatural pseudotachylytes[J].Bulletin of the SeismologicalSociety of America,2005,95(5):1666-1673.
    [115]Fukuyama E,Mizoguchi K.Constitutive parameters forearthquake rupture dynamics based on high-velocity frictiontests with variable sliprate[J].International Journal ofFracture,2010,163(1-2):15-26.
    [116]Brune J N,Henyey T L,Roy R F.Heat flow,stress,andrate of slip along the San Andreas Fault,California[J].Journal of Geophysical Research,1969,74(15):3821-3827.
    [117]Zoback M D,Zoback M L,Mount V S,et al.New evidenceon the state of stress of the San Andreas Fault System[J].Science,1987,238(4830):1105-1111.
    [118]Scholz C H.Evidence for a strong San Andreas fault[J].Geology,2000,28(2):163-166.
    [119]Zoback M D,Hickman S H.Preliminary observations ofstress and fluid pressure in and near the San Andreas Faultat depth in the SAFOD boreholes[A].ed.AmericanGeophysical Union,Fall Meeting[C],2005,T21A-0438.?
    [120]Morrow C,Radney B,Byerlee J.Chapter 3frictional strengthand the effective pressure law of montmorillonite and llliteclays[A]//Evans B,Wong T F eds.Fault Mechanics andTransport Properties of Rocks[C].Vol.51.New York,the USA,1992:69-88.
    [121]Moore D E,Lockner D A,Summers R,et al.Strength ofchrysotile-serpentinite gouge under hydrothermalconditions:Can it explain a weak San Andreas fault?[J].Geology,1996,24(11):1041-1044.
    [122]Collettini C,Niemeijer A,Viti C,et al.Fault zone fabricand fault weakness[J].Nature,2009,462(7275):907-910.
    [123]Sibson R H.Rupture nucleation on unfavorably oriented faults[J].Bulletin of the Seismological Society of America,1990,80(6A):1580-1604.
    [124]张培震,徐锡伟,闻学泽等.2008年汶川8.0级地震发震断裂的滑动速率、复发周期和构造成因[J].地球物理学报,2008,51(4):1066-1073.Zhang P Z,Xu X W,Wen X Z,et al.Slip rates andrecurrence intervals of the Longmen Shan active fault zoneand tectonic implications for the mechanism of the May 12Wenchuan earthquake,2008,Sichuan,China[J].ChineseJ.Geophys.(in Chinese),2008,51(4):1066-1073.
    [125]周永胜,何昌荣.汶川地震区的流变结构与发震高角度逆断层滑动的力学条件[J].地球物理学报,2009,52(2):474-484.Zhou Y S,He C R.The rheological structures of crust andmechanics of high-angle reverse fault slip for WenchuanMs8.0earthquake[J].Chinese J.Geophys.(in Chinese),2009,52(2):474-484.
    [126]Kano Y,Mori J,Fujio R,et al.Heat signature on theChelungpu fault associated with the 1999Chi-Chi,Taiwanearthquake[J].Geophysical Research Letters,2006,33(14):L14306.
    [127]Mori J,Li H,Wang H,et al.Temperature Measurementsin the WFSD-1 Borehole Following the 2008 WenchuanEarthquake(Mw 7.9)[A].//American GeophysicalUnion,Fall Meeting[C],2010,T53E-03.
    [128]Cowan D S.Do faults preserve a record of seismic slip?Afield geologists opinion[J].Journal of Structural Geology,1999,21(8-9):995-1001.
    [129]Fukuchi T,Mizoguchi K,Shimamoto T.Ferrimagneticresonance signal produced by frictional heating:A newindicator of paleoseismicity[J].Journal of GeophysicalResearch,2005,110(B12):B12404.
    [130]Ikehara M,Hirono T,Tadai O,et al.Low total and inorganiccarbon contents within the Taiwan Chelungpu fault system[J].Geochemical Journal,2007,41(5):391-396.
    [131]Ferri F,Di Toro G,Hirose T,et al.Low-to high-velocityfrictional properties of the clay-rich gouges from the slippingzone of the 1963Vaiont slide,northern Italy[J].Journal ofGeophysical Research,2011,116(B9):B09208.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心