秦皇岛32-6油田北区三维相控地质统计建模与反演
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
秦皇岛32-6油田主要含油层系是被断层复杂化了的明化镇组下段河流相储层,由于薄夹层规模小,砂体薄厚极不稳定且横向变化大,井间可对比性差。常规确定性反演方法受地震频带限制,对目的层段出现频次最多的3~5 m砂体无法准确表征,造成钻前、钻后砂体的变化比较大。为了提高河流相储层预测的分辨率和精度,文中发展应用了相控地质统计学反演方法。具体实现过程是,首先反演出高分辨率的砂泥岩性模型,将它与基于目标的方法模拟出的沉积微相模型合并,然后在新的相模型约束下,按照双重变差函数分析思想,实现对薄储层物性的高精度反演。实际应用表明,井点预测砂体厚度误差较小,井间预测砂体连通、接触关系符合地震趋势和地质统计规律。由此得到的阻抗、优势相和物性三维地质模型,其垂向网格间距可达到1 ms,既能在平面上很好地表现地质认识,又能在纵向上合理划分出隔、夹层。
The main oil-bearing series in QHD32-6 Oilfield is fluvial reservoir of lower Minghuazhen Formation which is destroyed by faults. Considering the small-scale of thin inter-bed, the instability of sand-body thickness, and the lateral variation of reservoir,the stratigraphic correlation between wells is very difficult. Limited by the seismic effective frequency band, the ordinary inversion method based on CSSI is difficult in recognizing the major sand bodies with 3-5m thickness in target layer, these lead to the large change of sand body numbers after drilling. However the geo-statistics inversion method based on Markov chain Monte-Carlo algorithm(MCMC) is more powerful in improving resolution and accuracy of reservoir prediction. The specific method is: invert some high-resolution lithology realizations using MCMC geo-statistic inversion firstly, and model the channel and non-channel sedimentary microfacies using object-based methods simultaneously, then merge these two models; under the controlling of the new facies model, in accordance with the concept of double-variogram analysis, three physical property models which can predict thinner reservoir more accurately have been inverted by using the MCMC algorithm again. The practical application at north area of QHD32-6 Oilfield shows that the thickness errors between predicted and the actual at every well are less than 2 m, and reservoir property between wells follows the geo-statistical rules. The P-impedance, dominant reservoir facies and physical properties geomodel inverted with 1 ms grid interval in vertical can not only deliver the geology knowledge in lateral but also separate the main sand and shale barrier-bed/inter-bed clearly, these have broken through the deadline of ordinary seismic resolution.
引文
[1]赵春明,胡景双,霍春亮,等.曲流河与辫状河沉积砂体连通模式及开发特征:以渤海地区秦皇岛32-6油田为例[J].油气地质与采收率,2009,16(6):88-91.
    [2]黄捍东,张如伟,魏世平.地震非线性随机反演方法在陆相薄砂岩储层预测中的应用[J].石油学报,2009,30(3):387-390.
    [3]张广智,王丹阳,印兴耀.利用MCMC方法估算地震参数[J].石油地球物理勘探,2011,46(4):605-609.
    [4]彭文绪,周心怀,彭刚,等.渤海海域油气藏特征统计分析[J].中国海上油气,2008,20(1):18-21.
    [5]王朝锋,汪昌贵,桂志先,等.声波曲线重构反演技术在青海油田的应用[J].断块油气田,2009,16(6):17-19.
    [6]何英伟.地震重构反演在大庆长垣剩余油预测中的应用[J].断块油气田,2013,20(2):162-165.
    [7]邓吉锋,周东红,杜晓峰,等.基于地震-复合微相分析砂体描述技术研究及应用[J].断块油气田,2013,20(1):55-58.
    [8]张国一,侯加根.大港板桥凝析油气田含气单砂体精细预测技术[J].断块油气田,2011,18(4):469-471.
    [9]Webster C M,Taylor P G.Integrating quantitative and qualitative reservoir data in sand prediction studies:The combination of numerical and geological analysis[R].SPE 108586,2007.
    [10]Lu X G,Pan M,Wang J H,et al.Microfacies modeling for distributary channel sandbody by using indicator principal component simulation[J].Acta Petrolei Sinica,2003,24(1):53-55.
    [11]年静波,汤磊,刘喜武.地质统计分析在地震资料砂泥岩分布预测中的应用[J].石油物探,2004,43(3):278-282.
    [12]王晖.综合应用地震、地质和测井资料预测储层分布[J].中国海上油气(地质),2001,15(2):135-140.
    [13]Wang Duanping,Yang Yaozhong,Gong Weiqing,et al.The method ctrf and application study about stochastic modeling with sedimentary microfacies[J].Bulletin of Science and Technology,2004,20(2):121-126.
    [14]于兴河,李胜利,赵舒,等.河流相油气储层的井震结合相控随机建模约束方法[J].地学前缘,2008,15(4):33-41.
    [15]Wu S H,Zhang Y W,Li S J,et al.Geological constraint principles in reservoir stochastic modeling[J].Journal of University of Petroleum:Edition of Natural Science,2001,25(1):55-58.
    [16]Yu X H,Ma X X,Mu L X,et al.Geological pattern and hierarchical surface analysis of meandering reservoir[M].Beijing:Petroleum Industry Press,2004:1-207.
    [17]Clayton V D.Geostatistical reservoir modelling[M].London:Oxford University Press,2002:193-244.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心