基于三相孔隙弹性理论的火山岩气层岩石物理响应特征分析(英文)
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
与以往利用速度或(和)弹性模量平均方法不同,本文基于Santos发展的三相孔隙介质岩石物理模型考察了两种不相混流体饱和的孔隙介质的地震响应。考虑到地层参考压力和孔隙中两种流体之间的牵引耦合作用,本文详细分析了地层条件下频率、孔隙度和含气饱和度对纵波和横波速度的影响。同时,孔隙度和含气饱和度对Vp/Vs的影响也给予了相应的讨论。用于本文数值研究的数据源自大庆探区深层火山岩样品。数值结果显示,对于低孔低渗的火山岩,纵波和横波的频散效应可被忽略。孔隙中气的含量变化对Vp/Vs的影响较小,但在含水饱和度一定条件下孔隙度的影响相对显著。在这种情况下,准确估计岩性和孔隙度对于深层火山岩来说显得更加重要。
Unlike previous theories with velocity and/or elastic modulus averaging,we use a three-phase porous rock physics model developed by Santos for analyzing the seismic response of two immiscible fluids in saturated porous media.Considering reservoir reference pressure and coupling drag of two fluids in pores,the effects of frequency,porosity,and gas saturation on the phase velocities of the P-and S-waves are discussed in detail under field conditions.The effects of porosity and gas saturation on Vp/Vs are also provided.The data for our numerical experiments are from a sample of deep volcanic rock from Daqing.The numerical results show that the frequency dispersion effect can be ignored for deep volcanic rocks with low porosity and low permeability.It is concluded that for deep volcanic rocks the effect of gas content in pores on Vp/Vs is negligible but the effect of porosity is significant when there is a certain amount of water contained in the pores.The accurate estimate of lithology and porosity in this case is relatively more important.
引文
Bear,J.,1 972,Dynamics of fluids in porous media:DoverP ublic atio ns,Ne w Yo rk.
    Berryman, J. G., 1980, Confirmation of Biot’s theory: Applied Physics Letters, 37, 382 – 384.
    Douglas, J., Furtado, F., and Pereira, F., 1997, On the numerical simulation of waterflooding of heterogeneous petroleum reservoirs: Computational Geosciences, 1, 155 – 190.
    Krief, M., Garat, J., Stellingwerff, J., and Ventre, J., 1990, A petrophysical interpretation using the velocities of P and S waves (full-waveform sonic): The Log Analyst, 31, 355 – 369.
    Lu, J. F., and Hanyga, A., 2005, Linear dynamic model for porous media saturated by two immiscible fluids: International Journal of Solids and Structure, 42, 2689 – 2709.
    Mavko, G., and Nolen-Hoeksema, R., 1994, Estimating seismic velocities at ultrasonic frequencies in partially saturated rocks: Geophysics, 59(2), 252 – 258.
    Mochizuki, S., 1982, Attenuation in partially saturated rocks: J. Geophys. Res., 87, 8598 – 8604.
    Murphy, W. F., 1982, Effects of partial water saturation on attenuation in Massillon sandstone and Vycor porous glass: J. Acoust. Soc. Am., 71, 1458 – 1468.
    Nie, J. X., Yang, D. H., and Yang, H. Z., 2004, Wave dispersion and attenuation in partially saturated sandstones: Chin. Phys. Lett., 21, 572 – 575.
    Santos, J. E., Corberó, J. M., and Douglas, J., 1990a, Static and dynamic behavior of a porous solid saturated by atwo-phase fluid: J. Acoust. Soc. Am., 87, 1428 – 1438.
    Santos, J. E., Douglas, J., Corberó, J. M., and Lovera, O. M., 1990b, A model for wave propagation in a porous medium saturated by a two-phase ? uid: J. Acoust. Soc. Am., 87, 1439 – 1448.
    Santos, J. E., Ravazzoli, C. L., Gauzellino, R. M., Carcione, J. M., and Cavallini, F., 2004, Simulation of waves in poro-viscoelastic rocks saturated by immiscible fluids: numerical evidence of a second slow wave: Journal of Computational Acoustics, 12 (1), 1 – 21.
    Shi, G., Shen, W. L., and Yang, D. Q., 2003, Therelationship of wave velocities with saturation and fluid distribution in pore space: Chinese J. Geophysics (inChinese), 46(1), 138 – 142.
    Tuncay, K., and Corapcioglu, M. Y., 1996, Body waves in poroelastic media saturated by two immiscible fluids: Journal of Geophysical Research, 101(B11), 25, 149 – 25, 159.
    Wang, D. X., Xin, K. F., Li, Y. M, Gao, J. H., and Wu, X. Y., 2006, An experimental study of influence of water saturation on velocity and attenuation in sandstone understratum conditions: Chinese J. Geophysics (in Chinese), 49(3), 908 – 914.
    Wang, Z., 2001, Fundamentals of seismic rock physics: Geophysics, 66(2), 398 – 412.
    Wei, C. F., and Muraleetharan, K. K., 2002, A continuum theory of porous media saturated by multiple immiscible fluids: International Journal of Engineering Science, 40, 1807 – 1833.
    White, J E., 1975, Computed seismic speeds and attenuation in rocks with partial gas saturation: Geophysics, 40(2), 224 – 323.
    Zhao, H. B., 2007, Numerical study of acoustic wave fleld in porous media saturated with two immiscible fluids and its application: PhD. Thesis (in Chinese), Institute of Acoustics, Chinese Academy of Sciences.
    Zhao, H. B., and Wang, X. M., 2008, Acoustic wave propagation simulation in a poroelastic medium saturated by two immiscible fluids using a staggered finite difference with a time partition method: Science in China (Series G) (in Chinese), 38(6), 1 – 20.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心