IODP 333航次:科学目标、钻探进展与研究潜力
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
在"地震带实验项目"(NanTroSEIZE)的总体框架下,IODP 333航次的任务是在日本四国岛岸外一条断面的3个站位获取岩芯。钻探于2010年12月12日至2011年1月10日实施,钻取了4个长岩芯,总长达1 005 m。IODP 333航次的主要研究内容是陆坡、海沟底部和海山脊部的第四纪沉积过程,包括沉积层内的孔隙压力、热流通量、粘土矿物组分、孔内微构造、火山地层学等,以及海底大型坡移事件沉积,弄清其基本特征及其第四纪层序形成的影响。集成上述分析资料,可望揭示边缘沉积体性质及其对地层内应力分布、临界应力值和强震发生的影响。此外,钻取的岩芯还有助于其他一些科学问题的探讨,如深海泥质沉积体系形成、火山活动的周期性、深海绿色沉积的组分与成因、沉积构造垂向分布特征与形成过程、第四纪细颗粒物质的沉积动力过程与海底地貌演化等。
The present contribution is a report submitted to the IODP-China office by the authors,after the implementation of the Integrated Ocean Drilling Program(IODP) Expedition 333.The objectives of this cruise are to drill at three sites along a transaction in the northern Philippine Sea,within the framework of the NanTroSEIZE program.The drilling operation was carried out from December 12,2010 to January 10,2011,and cores with a total length of 1 005 m were obtained.These cores provide the materials to study the Quaternary sedimentary processes and mass transport deposits associated with the slope basin,deep trench and sea mount environments.Laboratory analyses will be carried out to obtain information on pore pressure within the sediment,heat flux,clay mineralogy,micro-structures,and tephra stratigraphy.On such a basis,the influence of the accretionary prism on the stress distribution and the critical stress for the occurrence of large-scale earthquakes may be evaluated.Furthermore,the cores enable the researchers to seek solutions to other scientific problems,such as the formation of deep water fine-grained sediment deposits,periodicity of volcano activities,the mechanisms for the formation deep sea green muds,the vertical distribution patterns of sedimentary structures and the related processes,deep water sediment transport processes and the resultant geomorphological evolution during the Quaternary period.
引文
[1]Scholz C H.The Mechanics of Earthquakes and Faulting(2nd)[M].New York:Cambridge University Press,2002.
    [2]Noda A,TuZino T,Kanai Y,et al.Paleoseismicity along thesouthern Kuril Trench deduced from submarine-fan turbidites[J].Marine Geology,2008,254(1):73-90.
    [3]Lay T,Kanamori H,Ruff L.The asperity model and the nature oflarge subduction zone earthquakes[J].Earthquake Prediction Re-search,1982,1:3-71.
    [4]MARGINS Office.NSF MARGINS Program Science Plans 2004[M].New York:Columbia University Press,2003.
    [5]Gao Shu.Comments on the“NSF MARGINS Program scienceplans 2004”[J].Marine Geology and Quaternary Geology,2005,25(1):119-123.[高抒.美国《洋陆边缘科学计划2004》述评[J].海洋地质与第四纪地质,2005,25(1):119-123.]
    [6]Morgan J K,Sunderland E B,Ramseyne E B,et al.Deformationand mechanical strength of sediments at the Nankai subductionzone:Implications for prism evolution and decollment initiationand propagation[C]∥Dixon T H,Moore C J,eds.The Seis-mogenic Zone of Subduction Thrust Faults.New York:ColumbiaUniversity Press,2007:210-256.
    [7]Tobin H J,Saffer D M.Elevated fluid pressure and extreme me-chanical weakness of a plate boundary thrust,Nankai Trough sub-duction zone[J].Geology,2009,37(8):679-682.
    [8]Ando M.Source mechanisms and tectonic significance of historicalearthquakes along the Nankai Trough,Japan[J].Tectonophysics,1975,27:119-140.
    [9]Park J O,Tseru T,Kodaira S,et al.Splay fault branching alongthe Nankai subduction zone[J].Science,2002,287:1 157-1 160.
    [10]Underwood M B.Sediment inputs to subduction zones:Whylithostratigraphy and clay mineralogy matter[C]∥Dixon T H,Moore C J,eds.The Seismogenic Zone of Subduction Thrustfaults.New York:Columbia University Press,2007:42-85.
    [11]Simpson S E.Gravity Currents in the Environment and the Labo-ratory(2nd)[M].Cambridge:Cambridge University Press,1997.
    [12]Stow D A V,Bowen A J.A physical model for the transport andsorting of fine-grained sediment by turbidity currents[J].Sedim-entology,2006,27(1):31-46.
    [13]Alves T M,Cartwright J A.The effect of mass-transport depositson the younger slope morphology,offshore Brazil[J].Marine andPetroleum Geology,2010,27(9):2 027-2 036.
    [14]Alves T M,Lourenco S D N.Geomorphologic features related togravitational collapse:Submarine landsliding to lateral spreadingon a Late Miocene-Quaternary slope(SE Crete,eastern Mediter-ranean)[J].Geomorphology,2010,123:13-33.
    [15]Kastens K A.Earthquakes as a triggering mechanisms for debrisflows and turbidites on the Calabrian Ridge[J].Marine Geology,1984,55:13-33.
    [16]Strasser M,Stegmann S,Bussmann F,et al.Quantifying suba-queous slope stability during seismic shaking:Lake Lucerne asmodel for ocean margins[J].Marine Geology,2007,240(1/4):77-97.
    [17]Noda A,TuZino T,Kanai Y,et al.Paleoseismicity along thesouthern Kuril Trench deduced from submarine-fan turbidites[J].Marine Geology,2008,254(1/4):73-90.
    [18]Hubbert M K,Rubey W W.Role of fluid pressure in mechanicsof overthrust faulting,part I[J].Geological Society of AmericaBulletin,1959,70:115-166.
    [19]Screaton E,Saffer D,Henry P.Porosity loss within the under-thrust sediments of the Nankai accretionary complex:Implicationsfor overpressures[J].Geology,2002,30(1):19-22.
    [20]Yamano M,Foucher J P,Kinoshita M,et al.Heat flow and fluidflow regime in the western Nankai accretionary prism[J].Earthand Planetary Science Letters,1992,109:451-462.
    [21]Yamano M,Kinoshita M,Goto S,et al.Extremely high heatflow anomaly in the middle part of the Nankai Trough[J].Phys-ics and Chemistry of the Earth,2003,28:487-497.
    [22]Ondrak R,Gaedicke C,Horsfield B.Combining 2D-basin andstructural modeling to constrain heat transport along the MurotoTransect,Nankai Trough,Japan[J].Marine and Petroleum Geol-ogy,2009,26:580-589.
    [23]Masuda H,Peacor D R,Dong H L.Transmission electron mi-croscopy study of conversion of smectite to illite in mudstones ofthe Nankai Trough:Contrast with coeval bentonites[J].Claysand Clay Minerals,2001,49(2):109-118.
    [24]Kuehl S A,Hariu T M,Sanford N W,et al.Millimeter-scalesedimentary structure of fine-grained sediments:Examples fromcontinental margin environments[C]∥Benett R H,Bryant WR,Hulbert M H,eds.Microstructure of Fine-grained Sedi-ments:From Mud to Shale.New York:Springer-Verlag,1991:33-45.
    [25]Shephard L E,Rutledge A K.Clay fabric of fine-grained turbi-dite sequences from the southern Nares Abyssal Plain[C]∥Be-nett R H,Bryant W R,Hulbert M H,eds.Microstructure ofFine-grained Sediments:From Mud to Shale.New York:Spring-er-Verlag,1991:61-72.
    [26]Arculus R J,Gill J B,Cambray H,et al.Geochemical evolutionof arc systems in the western Pacific:The ash and turbidite re-cord recovered by drilling[C]∥Taylor B,Natland J,eds.Ac-tive Margins and Marginal Basins of the Western Pacific.Wash-ington DC:American Geophysical Union,1995:45-65.
    [27]Nagahashi Y,Satoguchi Y.Stratigraphy of the Pliocene to lowerPleistocene marine formations in Japan on the basis of tephra bedscorrelation[J].The Quaternary Research,2007,46(3):205-213.
    [28]Ike T,Moore G F,Kuramoto S,et al.Tectonics and sedimenta-tion around Kashinosaki Knoll:A subducting basement high inthe eastern Nankai Trough[J].Island Arc,2008,17:358-375.
    [29]Anikouchine W A,Ling H Y.Evidence for turbidite accumula-tion in trenches in the Indo-Pacific region[J].Marine Geology,1967,5(2):141-154.
    [30]Stow D A V,Bowen A J.A physical model for the transport andsorting of fine-grained sediment by turbidity currents[J].Sedim-entology,1980,27(1):31-46.
    [31]Collinson J,Mountney N,Thompson D.Sedimentary Structures(3rd)[M].Harpenden(UK):Terra,2006.
    [32]Bloomer S H,Taylor B,MacLeod C J,et al.Early arc volcan-isms and ophiolite problem:A perspective from drilling in thewestern Pacific[M]∥Taylor B,Natland J,eds.Active Marginsand Marginal Basins of the Western Pacific.Washington DC:A-merican Geophysical Union,1995:1-30.
    [33]Clift P D.Volcaniclastic sedimentation and volcanisms during therifting of western Pacific backarc basins[C]∥Taylor B,NatlandJ,eds.Active Margins and Marginal Basins of the Western Pacif-ic.Washington DC:American Geophysical Union,1995:67-96.
    [34]Lyle M.The brown-green color transition in marine sediments:Amarker of the Fe(III)-Fe(II)redox boundary[J].Limnologyand Oceanography,1983,28(5):1 026-1 033.
    [35]Giresse P,Wiewiora A.Origin and diagenesis of blue-green claysand volcanic glass in the Pleistocene of the Cote d’Lvoire-GhanaMarginal Ridge(ODP Leg 159,Site 959)[J].Sedimentary Ge-ology,1999,127(3/4):247-269.
    [36]Scudder R P,Murray R W,Plank T.Dispersed ash in deeplyburied sediment from the northwest Pacific Ocean:An examplefrom the Izu-Bonin arc(ODP Site 1149)[J].Earth and Plane-tary Science Letters,2009,284(3/4):639-648.
    [37]Mitchell J K,Soga K.Fundamentals of Soil Behaviour(3rd)[M].Hoboken(New Jersey):John Wiley,2005.
    [38]Yamada S.The role of soil creep and slope failure in the land-scape evolution of a head water basin:Field measurements in azero order basin of northern Japan[J].Geomorphology,1999,28:329-344.
    [39]Sasaki Y,Fujii A,Asai K.Soil creep process and its role indebris slide generation-field measurements on the north side ofTsukuba Mountain in Japan[J].Engineering Geology,2000,56(2):163-183.
    [40]Van Waasbergen R J,Winterer E L,Shlanger S O.Summit geo-morphology of western Pacific guyots[C]∥Pringle M S,Sager WW,Sliter W V,eds.The Mesozoic Pacific:Geology,Tectonics,and Volacanism.Washington DC:AGU,1993:335-366.
    [41]Bergerson D D.Geology and geomorphology of Wodejebato(Syl-vania)Guyot,Marshall Islands[C]∥Pringle M S,Sager W W,Sliter W V,eds.The Mesozoic Pacific:Geology,Tectonics,andVolacanism.Washington DC:AGU,1993:367-385.
    [42]Wright J V,Smith A L,Self S.A working terminology of ryro-clastic deposits[J].Journal of Volcanology and Geothermal Re-search,1980,8:315-336.
    [43]Ike T,Moore G F,Kuramoto S,et al.Variation in sedimentthickness and type along the northern Philippine Sea Plate at theNankai Trough[J].Island Arc,2008,17:342-357.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心