汶川地震断层带结构及渗透率
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
对汶川地震断层带进行了跨断层的渗透率测量.结果显示汶川地震断层由低渗的核部(2.4×10~(-19)~3.8×10~(-16)m~2)、高渗的破碎带(3.7×10~(-16)~3.0×10~(-15)m~2)以及含裂隙原岩(6.0×10~(-18)~4.3×10~(13)m~2)组成(有效压力40 MPa),其中新鲜断层泥具有最低的渗透率.断层泥和两侧原岩由于渗透率低,阻碍流体跨断层带流通,断层带内的流体活动局限在高渗的破碎带中,这一结果与断层岩显微结构和粒度分布特征能很好的吻合.对汶川地震同震热压作用发生的条件进行了探讨,结果显示,约2 km以下汶川地震主滑动带具有发生热压作用所要求的低渗透率特征.
Cross-fault permeability measurement was conducted on the Wenchuan earthquake fault.The results showed that this earthquake fault consists of fault core with low permeability (2.4×10~(-19)- 3.8×10~(-16) m~2),highly permeable damaged zone (3.7×10~(-16)- 3.0×10~(-15) m~2) and the fractured protolith (6.0× 10~(-18)-4.3×10~(-13) m~2) (40 MPa effective pressure) ,among which fresh gouges on the main slip surface are the most impermeable.Impeded by the impermeable protolith and fault gouge,cross-fault fluid flow was inhibited and fluid activity was confined within the damaged zone.This recognition is consistent with microstructure and grain size distribution of fault rocks.Condition of co-seismic thermal pressurization was calculated and the results showed that at depth greater than 2 km,the main slip zone of Wenchuan earthquake has the characteristics of low permeability for thermal pressurization to occur.
引文
[1] Sibson R H. Interaction between temperature and pore-fluid pressure during earthquake faulting--A mechanism for partial or total stress relief. Nature, 1973, 243:66-68
    [2] Lachenbruch A. Frictional heating, fluid pressure, and the resistance to fault motion. J. Geophys. Res. , 1980, 85:6097-6112
    [3] Mase C W, Smith L. Effects of frictional heating on the thermal, hydrological, and mechanical response of a fault. J.Geophys. Res. , 1987, 92 : 6249-6272
    [4] Byerlee J. Friction, overpressure and fault normal compression. Geophys. Res. Lett. , 1990, 17(12) . 2109-2112
    [5] Rice J R. Fault stress states, pore pressure distribution, and the weakness of the San Andreas Fault. In: Evans B & Wong T-F eds. Fault Mechanics and Transport Properties of Rocks, Academic, San Diego, 1992,475-503
    [6] Schon J H. Physical properties of rocks: fundamentals and principles of petrophysics. In: Handbook of Geophysical Exploration, 8. Pergamon Press, London, 1996
    [7] Morrow C A, Shi L Q, Byerlee J. Permeability and strength of San Andreas Fault gouge under high pressure. Geophys.Res. Lett., 1981, 8(4) :325-328
    [8] Morrow C A, Byerlee J D. Permeability of core samples from Cajon Pass Scientific Drill Hole: results from 2100 to 3500 m depth. J. Geophys. Res. , 1992, 97(B4) :5145-5151
    [9] Chu C, Wang C, Lin W. Permeability and frictional properties of San Andreas Fault gouges. Geophys. Res.Lett. , 1981, 8(6) : 565-568
    [10] Evans J P, Forster C B, Goddard J V. Permeability of fault-related rocks, and implications for hydraulic structure of fault zones. J. Struct. Geol. , 1997 ,19:1393-1404
    [11] Seront B, Wong T-F, Caine J S, Forster G B, Bruhn R L.Laboratory characterization of hydromechanical properties of a seismogenic normal fault system. J. Struct. Geol. , 1998,20:865-881
    [12] Faulkner D R, Rutter E H. Comparison of water and argon permeability in natural clay-bearing fault gouge under high pressure at 20℃. J. Geophys. Res., 2000,105:16415-16427
    [13] Wibberley C A J, Shimamoto T. Internal structure and permeability of major strike-slip fault zones: the Median Tectonic Line in Mie Prefecture, Southwest Japan. J.Struct. Geol. , 2003, 25:59-78
    [14] Wibberley C A J, Shimamoto T. Earthquake slip weakening and asperities explained by thermal pressurization. Nature,2005, 436: 689-692
    [15] Mizoguchi K, Hirose T, Shimamoto T. Permeability structure of Nojima fault; analysis of Funaki outcrop in Hokudan, Tsuna-gun, Hyogo Prefecture. Earth Monthly-Extra (in Japanese) , 2008, 31: 58-65
    [16] Chen T-M N, Zhu W, Wong T-f, et al. Laboratory characterization of permeability and its anisotropy of Chelungpu Fault rocks. Pure Appl. Geophys. , 2009, 166:1011-1036
    [17] Tanikawa W, Sakaguchi M, Hirono T, et al. Transport properties and dynamic processes in a fault zone from samples recovered from TCDP Hole B of the Taiwan Chelungpu Fault Drilling Project. Geochem. Geophys. Geosyst. , 2009, 10,Q04013, doi:l0. 1029/2008GC002269
    [18] Sibson R H. Implications of fault-valve behavior for rapture nucleation and recurrence. Tectonophysics , 1992, 211; 283-293
    [19] 徐锡伟,闻学泽,叶建青等.汶川M_s 8. 0地震地表破裂带及其发震构造.地震地质,2008,30(3) :597~629Xu X W, Wen X Z, Ye J Q, et al. The 8. 0 Wenchuan earthquake surface ruptures and its seismogenic structure. Seismology and Geology (in Chinese), 2008, 30(3) :597-629
    [20] Xu Zhiqin, Ji Shaocheng, Li Haibing, et al. Uplift of the Longmen Shan range and the Wenchuan earthquake. Episodes, 2008, 31(3) : 291-301
    [21] Sibson R H, Robert F, Poulsen H. High-angle reverse faults, fluid-pressure cycling and mesothermal gold-quartz deposits. Geology, 1988,16:551-555
    [22] 周永胜,何昌荣.汶川地震区的流变结构与发震高角度逆断层滑动的力学条件.地球物理学报,2009,52(2) :474~484Zhou Y S, He C R. The rheological structures of crust and mechanics of high-angle reverse fault slip for Wenchuan M_s8. 0 earthquake. Chinese J , Geophys. { in Chinese ) ,2009, 52(2) :474-484
    [23] Lockner D A, Summers R, Byerlee J D. Effects of temperature and sliding rate on frictional strength of granite.Pure Applied Geophysics, 1986, 124 : 445-469
    [24] Noda H, Shimamoto T. Thermal pressurization and slip-weakening distance of a fault: An example of the hanaore fault, Southwest Japan. Bull. Seismol. Soc. Am. , 2005, 95(4) :1224-1233
    [25] Ge S, Liu M, Lu N, et al. Did the Zipingpu Reservoir trigger the 2008 Wenchuan earthquake? Geophys. Res. Lett. , 2009,36, L20315, dot: 10. 1029/2009GL040349
    [26] Mitsui Y, Hirahara K. Coseismic thermal pressurization can notably prolong earthquake recurrence intervals on weak rate and state friction faults: Numerical experiments using different constitutive equations. J. Geophys. Res. , 2009,114, B09304, doi:10. 1029/2008JB006220
    [27] Bos B, Spiers C J. Fluid-assisted healing processes in gouge-bearing faults; insights from experiments on a rock analogue system. Pure and Applied Geophysics, 2002, 159:2537-2566
    [28] Kitagawa Y, Fujimori K, Koizumi N. Temporal change in permeability of the Nojima fault zone by repeated water injection experiments. Tectonophysics-, 2007, 443 : 183-192
    [29] Storti F, Billi A, Salvini F. Particle size distributions in natural carbonate fault rocks : insights for non-self-similar cataclasis. Earth and Planet. Sci. Lett., 2003, 206:173-186
    [30] 李传友,魏占玉.汶川M_s 8. 0地震地表破裂带北端位置的修订.地震地质,2009,31(1) :1~8Li C Y, Wei Z Y. Deformation styles of the northernmost surface rupture zone of the Ms8. 0 Wenchuan earthquake.Seismology and Geology (in Chinese)) 2009, 31(1) : 1-8
    [31] 韩亮,周永胜,陈建业等.汶川地震基岩同震断层泥结构特征.第四纪研究,2010,30(4) :745~758Han L, Zhou Y S, Chen J Y, et al. Structural characters of co-seismic fault gouge in bed rocks during the Wenchuan earthquake. Quaternary Sciences (in Chinese), 2010, 30(4) ,745-758
    [32] David C, Wong T-F, Zhu W, Zhang J. Laboratory measurement of compaction-induced permeability change in porous rocks: implication for the generation and maintenance of pore pressure excess in the crust. Pageoph, 1994,143;425-456
    [33] Morrow C A, Shi L Q, Byerlee J B. Permeability of fault gouge under confining pressure and shear stress. J. Geophys.Res. , 1984, 89:3193-3200
    [34] Billi A, Salvini F, Storto F. The damage zone-fault core transition in carbonate rocks: implications for fault growth,structure and permeability. J. Struct. Geol. , 2003, 25:1779-1794
    [35] Crawford B R, Faulkner D R, Rutter E H. Strength, porosity, and permeability development during hydrostatic and shear loading of synthetic quartz-clay fault gouge. J.Geophys. Res. , 2008, 113, B03207, doi:10. 1029/2006JB004634
    [36] 张 勇,冯万鹏,许力生等.2008年汶川大地震的时空破裂过程.中国科学(D辑),2008,38(10) :1186~1194Zhang Y, Feng W P, Xu L S, et al. Spatio-temporal rupture process of the 2008 great Wenchuan earthquake. Science in China (Series D: Earth Sciences) , 2009 ,52(2) :145-286
    [37] Tanikawa W, Shimamoto T. Comparison of Klinkenberg-corrected gas permeability and water permeability in sedimentary rocks. Int. J. Rock Mech. Min. Sci. , 2008, 46:229-238

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心