沉积模式约束的地震多属性水下扇岩相划分
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
水下扇是一类重要的岩性油气藏勘探目标,但对其内幕岩相进行精细刻画难度较大,导致勘探井位部署的成功率很低。为此,本文从"扇沉积模式"出发,建立一种模式指标来解决井数据缺乏的问题。以渤海湾盆地辽中凹陷南洼古近系东营组某一期湖底扇为例,通过经典水下扇模式分析地震相,综合选择出既有明确地质意义、又能一定程度上综合反映地震波反射特征的砂岩和砾岩两种组分含量指标来量化分类水下扇岩相。然后采用模糊径向基函数神经网络来映射"砂岩和砾岩含量—地震属性"间非线性关系,从而获得水下扇岩相的粗略划分,可满足勘探阶段大范围储层描述的精度要求。本文的主要目的是探讨如何将"扇沉积模式"与"地震数据"进行定量化衔接,从而为水下扇岩相的识别提供一种可能的解决方案。
Submarine fan is an important lithologic reservoir.However,it is still a challenge to precisely estimate the lithofacies of submarine fan in exploration geophysics.Therefore,we propose significance indicators based on the depositional model to solve lack of well data in the exploration period.With submarine fan facies model analysis,sandstone and conglomerate contents are selected as significance indicators to quantify lithofacies of submarine fan in Dongying Formation,Liaodong Depression,China.These indicators have not only clear geological significance,but also response of seismic reflection.The fuzzy radial function neural network maps the relation between"sandstone and conglomerate contents "and"seismic attributes" to estimate lithofacies of submarine fan,which improve the precision of large-scale reservoir characterization in exploration period.Our objective is to find out quantitative indicators between fan depositional model and seismic data as a potential approach to estimate the submarine fan lithofacies.
引文
[1]Kuenen P H,Migliorini C I.Turbidity currents as a cause of graded bedding.Journal of Geology,1950,58(2):97-127.
    [2]Menard H W.Deep-sea channels,topography,and sedimentation.AAPG Bulletin,1955,39(2):236-255.
    [3]Bouma A H.Sedimentology of Some Flysch Deposits:a Graphic Approach to Facies Interpretation.Amsterdam:Elsevier,1962.
    [4]Normark W R.Growth patterns of deep-sea fans.AAPG Bulletin,1970,54(11):2170-2195.
    [5]Mutti E,Ricci Lucchi F.Turbidites of the northern Apennines:introduction to facies analysis.International Geology Review,1978,20(2):125-166.
    [6]Walker R G.Deep-water sandstone facies and ancient submarine fans:models for exploration for stratigraphic traps.AAPG Bulletin,1978,62(6):932-966.
    [7]Vail P R.Seismic stratigraphy interpretation using sequence stratigraphy,Part 1:seismic stratigraphy interpretation procedure,in Bally A W(ed),Arias of seismic stratigraphy.Tulsa:AAPG Studies in Geology27,1987,1-10.
    [8]Reading H G,Richards M.Turbidite systems in deepwater basin margins classified by grain size and feeder system.AAPG Bulletin,1994,78(5):792-822.
    [9]刘孟慧,赵澄林.渤海湾盆地下第三系湖底扇的沉积特征.华东石油学院学报,1984,8(3):223-235.Liu Menghui,Zhao Chenglin.Sedimentary features of the sublake-fan of Eogene system in Bohai Bay.Journal of East China Petroleum Institute,1984,8(3):223-235.
    [10]赵澄林,刘孟慧.湖底扇相模式及其在油气预测中的应用.华东石油学院学报,1984,8(4):323-334.Zhao Chenglin,Liu Menghui.Facies model of the sublake-fan and its application to oil and gas exploration.Journal of East China Petroleum Institute,1984,8(4):223-235.
    [11]Van Wagoner J C,Mitchum Jr R M,Campion K M et al.Siliciclastic Sequence Stratigraphy in Well Logs,Core,and Outcrops:Concepts for High-resolution Correlation of Time and Facies.Tulsa:AAPG Methods in Exploration Series 7,1990.
    [12]Liu Z P,Liu J Q.Seismic controlled nonlinear extrapolation of well parameters using neural networks.Geophysics,1998,63(6):2035-2041.
    [13]Kohonen T.Self-organization and Associative Memory(3rd Edition).New York:Springer-Verlag,1989.
    [14]Saraswat P,Sen M.Artificial immune-based self-organizing maps for seismic-facies analysis.Geophysics,2012,77(4):O45-O53.
    [15]Bezdek J C,Tsao E C-K et al.Fuzzy Kohonen clustering networks.IEEE International Conference on Computational Intelligence,1992,1035-1040.
    [16]Hu W M,Xie D,Tan T N et al.Learning activity patterns using fuzzy self-organizing neural network.IEEE Transactions on Systems,Man,and Cybernetics,2004,34(3):1618-1626.
    [17]Russell B H,Hampson D P,Lines L R.Application of the radial basis function neural network to the prediction of log properties from seismic attributes-A channel sand case study.SEG Technical Program Expanded Abstracts,2003,22:454-457.
    [18]Moody J,Darken C.Fast learning in networks of locally-tuned processing units.Neural Computation,1989,1(2):289-303.
    [19]Nie J,Linkens D A.Learning control using fuzzified self-organizing radial basis function network.IEEE Transactions on Fuzzy Systems,1993,1(4):280-287.
    [20]Hunt K J,Haas R,Murray-Smith R.Extending the functional equivalence of radial basis function networks and fuzzy inference systems.IEEE Transactions on Neural Networks,1996,7(3):776-781.
    [21]Han D H,Nur A,Morqan D.Effects of porosity and clay content on wave velocities in sandstones.Geophysics,1986,51(11):2093-2107.
    [22]朱筱敏,董艳蕾,杨俊生等.辽东湾地区古近系层序地层格架与沉积体系分布.中国科学D:地球科学,2008,38(增刊1):1-10.Zhu Xiaomin,Dong Yanlei,Yang Junsheng et al.Sequence stratigraphic framework and distribution of depositional systems for the Paleogene in Liaodong Bay area.Sci China Ser D—Earth Sci,2008,38(S1):1-10.
    [23]加东辉,徐长贵,杨波等.辽东湾辽东带中南部古近纪古地貌恢复和演化及其对沉积体系的控制.古地理学报,2007,9(2):155-166.Jia Donghui,Xu Changgui,Yang Bo et al.Paleogene palaeogeomorphology reconstruction and evolution and its control on sedimentary systems in centralsouthern Liaodong Zone,Liaodongwan Bay.Journal of Palaeogeography,2007,9(2):155-166.
    [24]王建花,唐何兵,张良庆等.基于地震多属性分析的深层浊积扇刻画研究.西南石油大学学报(自然科学版),2012,34(2):54-64.Wang Jianhua,Tang Hebing,Zhang Liangqing et al.Study of deep layer turbidite fan detection based on the seismic multi-attribute analyses.Journal of Southwest Petroleum University(Science&Technology Edition),2012,34(2):54-64.
    [25]Wang Z G,Yin C,Fan T et al.Seismic geomorphology of a channel reservoir in Lower Minghuazhen Formation,Laizhouwan subbasin,China.Geophysics,2012,77(4):B187-B195.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心