时频域动态反褶积方法研究
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
大多数提高地震资料分辨率的反褶积方法都基于传统静态褶积模型,这与非均匀介质中的地震子波实际传播规律不符。因此,在动态褶积模型基础上,结合地震波在地层中的吸收衰减特性,提出一种基于时频域的动态反褶积方法。该方法将广义S变换良好的多分辨特性引入到地震资料动态反褶积处理中,首先将非平稳地震记录的广义S变换近似表示为静态震源子波的傅里叶变换、复数值时频衰减函数与反射系数广义S变换的乘积,再采用多项式拟合的方法对非平稳地震记录时频谱进行平滑处理,从而可估算动态传播子波和地层反射系数。本文方法不需要直接求取Q值,能够适用于变Q值情况。理论模型和三维实际资料处理结果表明,该方法不仅能改善地震资料的分辨率,还能有效补偿深部地层吸收所引起的能量衰减。
Most methods for improving the resolution of seismic data are usually based on the traditional static convolution model,which are inconsistent with the actual propagation law of seismic wavelet in inhomogeneous media. Therefore,based on the dynamic convolution model,this paper combines attenuation and absorption characteristics of seismic wave,and proposes a dynamic deconvolution method based on time-frequency domain. This method introduces the good multi-resolution characteristic of GST(generalized S transform)into the processing procedure of dynamic deconvolution for seismic data. Firstly,GST of non-stationary seismic records can be approximately presented as the product of Fourier transform of static source wavelet,time-frequency attenuation function and GST of the reflection coefficient. And then we use polynomial fitting to smooth the time-frequency spectral of non-stationary seismic records,thus dynamic propagation wavelet and the reflection coefficient of formation can be estimated. The method of this paper does not need calculate the value of Q directly,and it is applicable in the situation that the value of Q is changed. The processed results for both theoretical model and real 3D seismic data validate that this method not only can improve the resolution of the seismic data,but also can compensate efficiently the energy attenuation caused by deep formation absorption.
引文
[1]Robinson E A,Treitel S.Principles of digital Wiener filtering[J].Geophysical Prospecting,1967,15(3):311–332.
    [2]Clarke G K C.Time-varying deconvolution filters[J].Geophysics.1968,33:936–944.
    [3]Koehler F,Taner M T.The use of the conjugate-gradient algorithm in the computation of predictive deconvolution operators[J].Geophysics.1985,50:2752–2758.
    [4]Rosa A L R.Processing via spectral modeling[J].Geophysics.1991,56(8):1244–1251.
    [5]赵波,俞寿朋,聂勋碧,等.谱模拟反褶积及其应用[J].石油地球物理勘探,1996,31(1):101–115.Zhao Bo,Yu Shoupeng,Lie Xunbi,et al.Spectralmodeled deconvolution and its application[J].Oil Geophysical Prospecting.1996,31(1):101–115.
    [6]孙成禹.谱模拟方法及其在提高地震资料分辨率中的应用[J].石油地球物理勘探,2000,35(12):27–34.Sun Chengyu.Spectrum modeling method and its application to seismic resolution improvement[J].Oil Geophysical Prospecting,2000,35(12):27–34.
    [7]唐博文,赵波,吴艳辉,等.一种实现谱模拟反褶积的新途径[J].石油地球物理勘探,2010,45(11):66–70.Tang Bowen,Zhao Bo,Wu Yanhui,et al.A new way to realize spectral modeling deconvolution[J].Oil Geophysical Prospecting,2010,45(1):66–70.
    [8]Margrave G F,Lamoureux M P.Gabor deconvolution[R].CREWES Research Report.2001,13:241–276
    [9]Margrave G F,Lamoureux M P,Grossman J P,et al.Gabor deconvolution of seismic data for source waveform and Q correction[C].72thAnnual International Meeting,SEG,Expanded Abstracts,2002:2190–2193
    [10]Montana C A,Margrave G F.Surface-consistent Gabor deconvolution[C].76thAnnual International Meeting,SEG,Expanded Abstracts,2006:2812–2816.
    [11]Margrave G F,Lamoureux M P,Henley D C.Gabor deconvolution:Estimating reflectivity by nonstationary deconvolution of seismic data[J].Geophysics,2011,76(3):W15–W30.
    [12]Hale D.Q adaptive deconvolution[J].Standford Exploration Projece,1982,30:133–158.
    [13]Futterman W I.Dispersive body waves[J].Journal of Geophysical Research,1962,67(13):5279–5291
    [14]裴江云,何樵登.基于Kjartansson模型的反Q滤波[J].地球物理学进展,1994,9(1):90–99.Pei Jiangyun,He Qiaodeng.Inverse Q filtering according to Kjartansson model[J].Progress in Geophysics,1994,9(1):90–99.
    [15]Kjartansson E.Constant Q wave propagation and attenuation[J].Jouranl of Geophysical Research,1979,84:4737–4748.
    [16]Wang Y H.A stable and efficient approach of inverse Q filtering[J].Geophysics,2002,67(2):657–663.
    [17]Wang Y H.Inverse Q filtering for seismic resolution enhancement[J].Geophysics,2006,71(3):51–61
    [18]Zhang C,Ulrych T J.Seismic absorption compensation:A least–squares inverse scheme[J].Geophysics,2007,72(6):R109–R114.
    [19]姚振兴,高星,李维新.用于深度域地震剖面衰减与频散补偿的反Q滤波方法[J].地球物理学报,2003,46(2):229–233.Yao Zhenxing,Gao Xing,Li Weixin.The forward Q method for compensating attenuation and frequency dispersion used in the seismic profile of depth domain[J].Chinese Journal of Geophysics.2003,46(2):229–233.
    [20]Durak L,Arikan O.Short-time Fourier transform:Two fundamental properties and optimal implementation[J].IEEE Trans.on signal Processing,2003,51(5):1231–1242.
    [21]Gabor D.Theory of Communication[J].Journal of IEEE,1946,93(3):429–457.
    [22]Rioul O,Vetterli M.Wavelets and signal processing[J].IEEE Signal Processing,1991,8(4):14–38.
    [23]Stockwell R G,Mansinha L,Lowe R P.Localization of the complex spectrum:The S transform[J].IEEE Transactions on signal processing,1996,44(4):998–1001.
    [24]Mc Fadden P D,Cook J G,Forster L M.Decomposition of gear vibration signals by generalized S-transform[J].Mechnical Systems and Signal Process,1999,13(4):691–707.
    [25]Pinnegar C R,Mansinha L.The S-transform with windows of arbitrary and varying shape[J].Geophysics,2003,68(1):381–385.
    [26]高静怀,陈文超,李幼铭,等.广义S变换与薄互层地震响应分析[J].地球物理学报,2003,46(4):526–532.Gao Jinghuai,Chen Wenchao,Li Youming,et al.Generalized S transform and seismic response analysis of thin interbeds[J].Chinese Journal of Geophysics,2003,46(4):526–532.
    [27]Margrave G F.Theory of nonstationary linear filtering in the Fourier domain with application to time-variant filtering[J].Geophysics,1998,63:244–259.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心