利用震后黏弹性位错理论研究苏门答腊地震(M_w9.3)的震后重力变化
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
本文利用2003—2011年的GRACE RL05数据提取了苏门答腊地震(Mw9.3)引起的震后重力变化,发现断层两侧震后重力变化速率存在明显差异,断层下盘总体变化率为0.55μGal/yr,断层上盘为0.16μGal/yr.基于子断层叠加的编程思想,本文将Tanaka的黏弹球体位错理论配套计算程序(简称黏弹位错程序)加以改造,克服了其近场计算精度不足(甚至错误)的缺陷,可用来研究大地震引起的近场震后位移与重力变化.本文利用改造后的黏弹位错程序计算了2004年苏门答腊地震(Mw9.3)产生的同震重力变化,计算结果在空间分布和量级上均与利用弹性位错程序计算获得的结果一致,验证了我们对黏弹位错程序进行改造的正确性.最后,结合GRACE卫星观测数据,本文利用Tanaka的黏弹位错理论研究了苏门答腊地区的地幔黏性因子.结果表明,该地区地幔黏滞性具有显著的横向差异,当发震断层上下两盘的地幔黏滞性系数分别取8×1018 Pa·s和1×1018 Pa·s时,模拟的震后重力变化在总体空间分布和变化趋势上与GRACE卫星观测结果更接近.
The GRACE(Gravity Recovery and Climate Experiment)mission has continually provided the data of temporal variability of the global gravity after its launch.Several coseismic gravity changes have been successfully retrieved by the GRACE mission.The visco-elastic dislocation theory is used to study the co-and post-seismic deformations.In this paper,we studythe post-seismic gravity changes due to the 2004 Sumatra earthquake(Mw9.3)based on the viscoelastic spherical dislocation theory and the GRACE data,and then analyze the viscosity of the mantle and horizontal difference at this area.We adopt the RL05 data provided by UT/CSR(Center for Space Research,University of Texas),and the data spans from January 2003 to December 2014.We replaced the Earth′s oblateness values(C20)with those from Satellite Laser Ranging because of their poor accuracy.After the de-correlation filter using polynomials of degree 3for coefficients with orders 6or higher to alleviate longitudinal stripes and the Gaussian smoothing with averaging radius of 350 km to reduce short wavelength noises,we obtain the post-seismic gravity changes due to the 2004 Sumatra earthquake(Mw9.3)based on the difference method and time series of two points respectively located on the hanging side and the heading side.We adopt the visco-elastic spherical dislocation theory to validate the GRACE-derived result.We first use the integration of the finite fault models to solve the problem of large errors in the near-field computation using the viscoelastic spherical dislocation theory,and comparing the modified results with the results of elastic spherical dislocation theory.After that,we retrieve post-seismic gravity changes induced by the earthquake.The result shows that the peak of the gravity changes is from-8.3to 4.6μGal in the period of 2004—2005based on the GRACE,which is consistent with the result derived by the elastic spherical dislocation theory in the spatial distribution and the magnitude.Based on the spatial distribution of the gravity changes and the analysis of time series,we find that the rate of the post-seismic gravity change at the heading side is 0.55μGal/yr and the rate is 0.16μGal/yr on the other side,which demonstrates that the viscosity of the two sides of the fault is different.The differences of coseismic vertical displacement and gravity changes based on the modified visco-elastic theory are respectively 0.06% and 0.1%,compared with those derived from the elastic spherical dislocation theory. We also analyze the Green functions of the vertical displacement and gravity changes at the source depth of 32 km in two different periods of 0~0.7years and 0~7years,which demonstrate that we have successfully solved the problem of large errors in the near-field computation using the visco-elastic spherical dislocation theory.Based on the corrected method,we simulate the post-seismic gravity changes due to the 2004 Sumatra earthquake(Mw9.3),finding that only when the viscosity of the heading side is 1×1018Pa·s and the viscosity of the hanging side is 8×1018 Pa·s,the simulating results are consistent with the GRACE-derived results in the spatial distribution and the magnitude.Based on the theory results,we find that the rate of the post-seismic gravity changes at the heading side is 0.52μGal/yr and the rate of the post-seismic gravity changes at the hanging side is-0.12μGal/yr.Comparing the observing results with the simulating results,it demonstrates that the viscosity of the mantle at the Sumatra region is laterally inhomogeneous.The viscosity at the left side(the heading side)of the fault is smaller than the one at the right side(the hanging side)of the fault,and the viscosity is respectively 1×1018Pa·s and 8×1018Pa·s.
引文
Broerse D B T,Vermeersen L L A,Riva R E M,et al.2011.Ocean contribution to coseismic crustal deformation and geoidanomalies:Application to the 2004 December 26 Sumatra—Andaman earthquake.Earth Planet.Sci.Lett.,305(3-4):341-349,doi:10.1016/j.epsl.2011.03.011.
    Cadek O,Fleitout L.2003.Effect of lateral viscosity variations inthe top 300km on the geoid and dynamic topography.Geophys.J.Int.,152:566-580.
    Cambiotti G,Bordoni A,Sabadini R,et al.2011.GRACE gravitydata help constraining seismic models of the 2004 Sumatranearthquake.J.Geophys.Res.,116:B10403,doi:10.1029/2010JB007848.
    Cambiotti G,Sabadini R.2013.Gravitational seismology retrievingCentroid-Moment-Tensor solution of the 2011Tohoku earthquake.J.Geophys.Res.,118,183-194,doi:10.1029/2012JB009555.
    Cannelli V,Melini D,Piersanti A,et al.2008.Postseismicsignature of the 2004Sumatra earthquake on low-degree gravityharmonics.J.Geophys.Res.,113,B12414,doi:10.1029/2007JB005296.
    Chen J L,Wilson C R,Tapley B D,et al.2007.GRACE detectscoseismic and postseismic deformation from the SumatraAndaman earthquake.Geophys.Res.Lett.,34(13):L13302,doi:10.1029/2007GL030356.
    Chen Y T,Huang L R,Lin B H,et al.1979.A dislocation modelof the Tangshan earthquake of 1976 from the inversion ofgeodetic data.Chinese J.Geophys.(in Chinese),22(3):201-215.
    Chen Y T,Lin B H,Lin Z Y,et al.1975.The focal mechanism of1966Hsingtai earthquake as inferred from the ground deformationobservations.Chinese J.Geophys.(in Chinese),18(3):164-181.
    Deng J S,Gurnis M,Kanamori H,et al.1998.Viscoelastic low inthe lower crust after the 1992Landers,California,earthquake.Science,282(5394):1689-1692.
    De Linage C,Rivera L,Hinderer J,et al.2009.Separation ofcoseismic and postseismic gravity changes for the 2004Sumatranearthquake from 4.6yr of GRACE observations and modellingof the coseismic change by normal mode summation.Geophys.J.Int.,176(3):695-714.
    De Viron O,Panet I,Mikhailov V,et al.2007.Retrievingearthquake signature in GRACE gravity solutions.Geophys.J.Int.,174,doi:10.1111/j.1365-246X.2008.03807.x.
    Fu G Y,Sun W K,Fukuda Y,et al.2010.Coseismic displacementscaused by point dislocations in a three dimensional heterogeneous,spherically earth model.Geophys.J.Int.,183(2):706-726,doi:10.1111/j.1365-246X.2010.04757.x.
    Fu G Y,Sun W K.2012.Overall design and specific structures ofthe computing codes for coseismic deformations on a layeredspherical earth.Earthquake(in Chinese),32(2):73-87.
    Han S C,Shum C K,Bevis M,et al.2006.Crustal dilatationobserved by GRACE after the 2004Sumatra-Andaman earthquake.Science,313(5787):658-662.
    Han S C,Sauber J,Luthcke S B,et al.2008.Implications ofpostseismic gravity change following the great 2004Sumatra—Andaman earthquake from the regional harmonic analysis ofGRACE intersatellite tracking data.J.Geophys.Res.,113:B11413,doi:10.1029/2008JB005 705.
    Hao J L,Yao Z X.2012.The coseismic displacement,strain andstress in the layered elastic model.Chinese J.Geophys.(inChinese),5(5):1682-1694,doi:10.6038/j.issn.0001-5733.2012.05.0 25.
    Hoechner A,Babeyko A Y,Sobolev S V.2008.Enhanced GPSinversion technique applied to the 2004Sumatra earthquake andtsunami.Geophys.Res.Lett.,35:L08310,doi:10.1029/2007GL033133.
    Hoechner A,Sobolev S V,Einarsson I,et al.2011.Investigationon afterslip and steady state and transient rheology based onpostseismic deformation and geoid change caused by the Sumatra2004earthquake.Geochem.Geophys.Geosyst.,12:Q07010,doi:10.1029/2010GC 003450.
    Ju X L,Shen Y Z,Zhang Z Z.2013.Antarctic ice mass changeanalysis based on GEACE RL05data.Chinese J.Geophys.(inChinese),56(9):2918-2927.
    Jónsson S,Segall P,Pedersen R,et al.2003.Post-earthquakeground movements correlated to pore-pressure transients.Nature,424(6945):179-183.
    Ma X Q,Kusznir N J.1994.Effects of rigidity layering,gravity andstress relaxation on 3-D subsurface fault displacement fields.Geophys.J.Int.,118(1):201-220.
    Ogawa R,Heki K.2007.Slow postseismic recovery of geoiddepression formed by the 2004Sumatra-Andaman Earthquakeby mantle water diffusion.Geophys.Res.Lett.,34:L06313,doi:10.1029/2007GL029340.
    Okada Y.1985.Surface deformation caused by shear and tensilefaults in a half-space.Bull.Seism.Soc.Am.,75(4):1135-1154.
    Panet I,Mikhailov V,Diament M,et al.2007.Coseismic and postseismic signatures of the Sumatra 2004 December and 2005March earthquakes in GRACE satellite gravity.Geophy.J.Int.,171(1):177-190.
    Panet I,Pollitz F,Mikhailov V,et al.2010.Upper mantlerheology from GRACE and GPS postseismic deformation afterthe 2004Sumatra—Andaman earthquake.Geochem.Geophys.Geosyst.,11(6):Q06008,doi:10.1029/2009GC002905.
    Piersanti A,Spada G,Sabadini R,et al.1995.Global post-seismicdeformation.Geophys.J.Int.,120(3):544-566.
    Pollitz F F.1996.Coseismic deformation from earthquake faultingin a layered spherical Earth.Geophys.J.Int.,125:1-14
    Pollitz F F.1992.Postseismic relaxation theory on the sphericalearth.Bulletin of the Seismological Society of America,82(1):422-453.
    Pollitz F F.2003.Post-seismic relaxation theory on a laterallyheterogeneous viscoelastic model.Geophys.J.Int.,155(1):57-78.
    Rundle J B.1980.Static elastic-gravitational deformation of alayered half space by point couple sources.J.Geophys.Res.:Solid Earth(1978—2012),85(B10):5355-5363.
    Rundle J B.1982.Viscoelastic-gravitational deformation by arectangular thrust fault in a layered Earth.J.Geophys.Res.,87(B9):7787-7796.
    Sabadini R,Piersanti A,Spada G.1995.Toroidal/poloidalpartitioning of global post-seismic deformation.Geophys.Res.Lett.,22(8):985-988.
    Sheu S Y,Shieh C F.2004.Viscoelastic-after slip concurrence:Apossible mechanism in the early post-seismic deformation of theMw7.6,Chi-Chi(Taiwan)earthquake.Geophys.J.Int.,159(3):1112-1124.
    Spada G,Boschi L.2006.Using the Post-Widder formula tocompute the Earth′s viscoelastic Love numbers.Geophys.J.Int.,166(1):309-321.
    Steketee J A.1958.On Volterra′s dislocations in a semi-infiniteelastic medium.Canadian Journal of Physics,36(2):192-205.
    Sun W K,Okubo S.1993.Surface potential and gravity changes dueto internal dislocations in a spherical Earth—I.Theory for apoint dislocation.Geophys.J.Int.,114(3):569-592.
    Sun W K,Okubo S,Vaníˇcek P.1996.Global displacements causedby point dislocations in a realistic Earth model.J.Geophys.Res.,101(B4):8561—8577,doi:10.1029/95JB03536.
    Sun W K,Okubo S.1998.Surface potential and gravity changes dueto internal dislocations in a spherical Earth—II.Application to afinite fault.Geophys.J.Int.,132(1):79-88.
    Sun W K,Okubo S,Fu G Y,et al.2009.General formulations ofglobal co-seismic deformations caused by an arbitrary dislocationin a spherically symmetric earth model-applicable to deformedearth surface and space-fixed point.Geophys.J.Int.,177(3):817-833,doi:10.1111/j.1365-246X.2009.04113.x.
    Swenson S,Wahr J.2006.Post-processing removal of correlatederrors in GRACE data.Geophys.Res.Lett.,33:L08402,doi:10.1029/2005GL025285.
    Tanaka T,Okuno J,Okubo S.2006.A new method for thecomputation of global viscoelastic post-seismic deformation in arealistic earth model(I)—vertical displacement and gravityvariation.Geophys.J.Int.,164(2):273-289,doi:10.1111/j.1365-246X.2005.02821.x.
    Tanaka T,Okuno J,Okubo S.2007.A new method for thecomputation of global viscoelastic post-seismic deformation in arealistic earth model(II)—horizontal displacement.Geophys.J.Int.,170(3):1031-1052,doi:10.1111/j.1365-246X.2007.03486.x.
    Tanaka Y,Klemann V,Fleming K,et al.2009.Spectral finiteelement approach to postseismic deformation in a viscoelasticself-gravitating spherical Earth.Geophys.J.Int.,176:715-739.
    Wang H S.1999.Surface vertical displacements,potentialperturbations and gravity changes of a viscoelastic earth modelinduced by internal point dislocations.Geophys.J.Int.,137(2):429-440.
    Wang R J,Lorenzo Martín F,Roth F.2003.Computation ofdeformation induced by earthquakes in a multi-layered elasticcrust-FORTRAN programs EDGRN/EDCMP.Computers andGeosciences,29(2):195-207.
    Wang R J,Lorenzo-Martín F,Roth F.2006.PSGRN/PSCMP—Anew code for calculating co-and post-seismic deformation,geoidand gravity changes based on the viscoelastic-gravitational
    dislocation theory.Computers and Geosciences,32(4):527-541.
    Wang W X,Shi Y L,Sun W K,et al.2011.Viscous lithosphericstructure beneath Sumatra inferred from post-seismic gravitychanges detected by GRACE.Sci.ChinaE arth Sci.,54(8):1257-1267.
    Wang L,Shum C K,Simons F J,et al.2012.Coseismic andpostseismic deformation of the 2011 Tohoku-Oki earthquakeconstrained by GRACE gravimetry.Geophys.Res.Lett.,39:L07301,doi:10.1029/2012GL051104.
    Zhang G Q,Fu G Y,Zhou X.2015.The evolution process ofgravitational field after the Sumatra Mw9.3earthquake fromGRACE RL05data.Journal of Geodesy and Geodymanics(inChinese),35(2):303-308.
    Zhou X,Sun W K,Fu G Y.2011.Gravity satellite GRACE detectscoseismic gravity changes caused by 2010Chile Mw8.8earthquake.Chinese J.Geophys.,54(7):1745-1749.
    Zhou X.2012.Coseismic deformation and slip characteristics frommodern geodetic data for the 2011 Tohoku-Oki(Mw9.0)megathrust earthquake[Ph.D.thesis](in Chinese).Beijing:University of Chinese Academy of Sciences.
    Zhou X,Sun W K,Zhao B,et al.2012.Geodetic observationsdetecting coseismic displacements and gravity changes caused bythe Mw=9.0Tohoku-Oki earthquake.J.Geophys.Res.,117:B05408,doi:10.1029/2011JB008849.
    陈运泰,黄立人,林邦慧等.1979.用大地测量资料反演的1976年唐山地震的位错模式.地球物理学报,22(3):201-215.
    陈运泰,林邦慧,林中洋等.1975.根据地面形变的观测研究1966年邢台地震的震源过程.地球物理学报,18(3):164-181.
    付广裕,孙文科.2012.球体位错理论计算程序的总体设计与具体实现.地震,32(2):73-87.
    郝金来,姚振兴.2012.均匀弹性分层介质模型中的同震位移,应变以及应力.地球物理学报,55(5):1682-1694,doi:10.6038/j.issn.0001-5733.2012.05.025.
    鞠晓蕾,沈云中,张子占.2013.基于GRACE卫星RL05数据的南极冰盖质量变化分析.地球物理学报,56(9):2918-2927.
    张国庆,付广裕,周新.2015.利用GRACE卫星RL05数据提取苏门答腊Mw9.3级地震同震和震后重力变化.大地测量与地球动力学,35(2):303-308.
    周新,孙文科,付广裕.2011.重力卫星GRACE检测出2010年智利Mw8.8地震的同震重力变化.地球物理学报,54(7):1745-1749.
    周新.2012.利用现代大地测量数据研究2011日本东北大地震(Mw9.0)的同震变形和断层滑动分布[博士论文].北京:中国科学院大学.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心