用能量累积法检测地震波雷达信号
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
将具有高度重复性的地震波雷达长时间向地壳内发射线性调频信号,经过地下介质的传播后到达地面,用地震仪器在监测点和检测点记录下来,通过分析数据来了解地壳速度结构及波速变化.线性调频信号是一种非平稳信号,它的频率随时间线性变化,有很好的能量聚集性,非常适合做时间-频率分析.本文用短时傅里叶变换对监测点的信号进行时间-频率分析,以检验地震波雷达发射信号的时间和频率是否和控制系统一致.通过WignerVille分布将地震波雷达发射的信号能量聚集在线性调频直线上,再用Hough变换累积聚集的能量形成波峰,按照线性调频直线的倾角提取波峰所在行,计算到时后构成地震波走时曲线图.用靠近本次实验地点的H-21剖面得到的地壳速度结构正演该测线的Pg、Sg、PmP和SmS的折合走时曲线,并与用能量累积法提取出的地震波走时曲线进行对比,分析结果表明:地震波雷达发射线性调频信号的时间和频率都符合控制要求,重复性高达99.9%以上,可以清晰地分辨出Pg、Sg震相,并且PmP和SmS震相可辨.
How to identify seismic wave velocity anomalies and to study their characteristics has practical significances for earthquake study and prediction.Almost all disastrous earthquakes in China′s mainland have occurred in the Earth′s crust within depth of 5~25km.Therefore,dynamic monitoring physical parameters of the Earth′s crust is an effective approach to predicting earthquakes.Seismic Wave Radar(SWR)is a type of mechanical and electrical devices.It continuously excites Linear Frequency Modulation(LFM)signals into the Earth′s crust,and these signals are recorded by high sensitivity seismographs at the deployment sites.How to retrieve impulsive seismic waveforms from the recorded data which include signals and differentkinds of noises is very important for calculating accurate travel times and temporal velocity variation.In this work,we propose a new method for processing the SWR data,which is based on accumulating energy in time-frequency domain.LFM is a non-stationary signal and its frequencies vary linearly as a function of time and have a good energy concentration,so it is very suitable for time-frequency analysis.We use Short-Time Fourier Transform(STFT)to analyze the data recorded by the monitoring stations,and acquire the time-frequency distribution,in order to validate whether the excitation time and frequencies are consistent with those set by the control system of SWR.Then,two methods are introduced for the waveform retrieval from the SWR data.One is the Wigner-Ville Distribution(WVD)algorithm with the best time-frequency concentration capability for the LFM signals,and the other one is the Wigner-Hough Transform(WHT)which is helpful to suppress the cross-time interference in the signal detection and parameter estimation for the multi-component LFM signals.By aggregating energy of the excited signals of the SWR on the LFM line with WVD method and accumulating the concentration energy to a crest by WHT,we can extract the peak row according to the inclination angle of the LFM line and compose the seismic wave travel-time curve after calculating the travel time.Firstly,in order to quantify the repeatability of the SWR,we calculated cross-correlation coefficients of all waveform pairs retrieved from different time windows.Within the total 126hours′SWR data,cross-correlations coefficients of 123hours′are bigger than 0.999.The high correlations between the waveforms indicate the excellent repeatability of the SWR.In addition,the results obtained from STFT methods show that the excitation time and frequencies of the LFM signals met the control requirements and the repeatability is more than 99.9%.Finally,the crustal velocity structure obtained from the H-21 section near the location of this experiment was used to calculate the reduced travel-time curves of Pg,Sg,PmP and SmS of the detecting line,which were compared with those retrieved by our method.The results demonstrate that the proposed method is an effective way for retrieving waveform,identifying seismic phase and measuring travel time.By using this method,we can clearly identify Pg and Sg,and high frequency seismic phases such as PmP and SmS with strong amplitude in some epicenter distances can be discernable.In all,the SWR with high repeatability can be easily applied to monitoring temporal changes and imaging the spatial variations of the subsurface structure.The proposed method provides a feasible way to process the SWR data and advance its application in monitoring the crustal processes.
引文
Alekseev A S,Chichinin I S,Korneev V A.2005.Powerful lowfrequency vibrators for active seismology.Bulletin of theSeismological Society of America,95(1):1-17.
    Chen Y,Zhang W,Chen H L,et al.2006.Seismic radar.Progressin Geophys.(in Chinese),21(1):1-5.
    Cheng Z L,Zheng S H,Liu J.2007.Application Research ofDigital Seismological Observation Data(in Chinese).Beijing:Seismological Press.
    Department of science&earthquake monitoring of China EarthquakeAdministration.1995.Earthquake Observation Technology(inChinese).Beijing:Seismological Press.
    Feng R,Pang Q Y,Fu Z X,et al.1976.Variations of Vp/Vsbeforeand after the Haicheng Earthquake of 1975.Chinese J.Geophys.(in Chinese),19(4):295-305.
    Feng R.1977.On the variations of the velocity ratio before andafter the Xinfengjiang reservoir impounding earthquake ofM=6.1.Chinese J.Geophys.(in Chinese),20(3):211-221.
    Hu C H,Zhou T,Xia Q B,et al.2002.System Analysis&DesignBased on MATLAB-Time-Frequency(in Chinese).Xi′an:Xi′an Electronic and Science University Press.
    Ikuta R,Yamaoka K.2004.Temporal variation in the shear waveanisotropy detected using the Accurately Controlled RoutinelyOperated Signal System(ACROSS).Journal of GeophysicalResearch,109(B9):B09305,doi:10.1029/2003JB002901.
    Lai X L,Zhang X K,Sun Y.2006.The complexity feature of crustmantle boundary in Zhangbei seismic region and its tectonicimplication.Acta Seismologica Sinica(in Chinese),28(3):230-237.
    Li M X,Liu J.2006.Study on velocity ratio(Vp/Vs)anomaly ofearthquake sequences in Yunnan region.Earthquake(inChinese),26(1):26-34.
    Li Z W,You Q Y,Ni S D,et al.2013.Waveform retrieval andphase identification for seismic data from the CASS experiment.Pure and Applied Geophysics,170(5):815-830.
    Liu X K,Cui R S,Wang H T,et al.2013.Detecting of controlledaccurate seismic source signal using Wigner-Hough transformation.Earthquake(in Chinese),33(3):33-42.
    Peng C Y,Yang J S,Xue B,et al.2013.Research on correlationbetween early-warning parameters and magnitude for theWenchuan Earthquake and its aftershocks.Chinese J.Geophys.(inChinese),56(10):3404-3415,doi:10.6038/cjg20131016.
    Peng C Y,Zhu X Y,Yang J S,et al.2013a.Development of anintegrated onsite earthquake early warning system and testdeployment in Zhaotong,China.Computers&Geosciences,56:170-177,doi:10.1016/j.cageo.2013.03.018.
    Peng C Y,Yang J S,Xue B,et al.2014a.Exploring the feasibilityof earthquake early warning using records of the 2008Wenchuan earthquake and its aftershocks.Soil Dynamics andEarthquake Engineering,57:86-93,doi:10.1016/j.soildyn.2013.11.005.
    Peng C Y,Yang J S,Zheng Y,et al.2014b.Aτc magnitudeestimation of the 20 April 2013Lushan earthquake,Sichuan,China.Science China Earth Sciences,57(12):3118-3124,doi:10.1007/s11430-014-4971-8.
    Peng C Y,Yang J S,Xue B,et al.2015.A low-latency dataacquisition system for earthquake early warning.Earthquake(in Chinese),35(1):140-148.
    Song J L,Ten Brink U.2004.RayGUI 2.0:A Graphical UserInterface for Interactive Forward and Inversion Ray-Tracing:USGS Open-File Report 2004-1426.New York:BiblioGov.
    Tang X H,Li Q L.2008.Time-frequency&wavelet transfer(inChinese).Beijing:Science Press.
    Wang H T,Zhuang C T,Xue B,et al.2009.Precisely and activelyseismic monitoring.Chinese J.Geophys.(in Chinese),52(7):1808-1815,doi:10.3969/j.issn.0001-5733.2009.07.015.
    Yang W,Ge H K,Wang B S,et al.2010.Velocity changesobserved by the precisely controlled active source for theMianzhu Ms5.6earthquake.Chinese J.Geophys.(in Chinese),53(5):1149-1157,doi:10.3969/j.issn.0001-5733.2010.05.016.
    Yang W,Wang B S,Ge H K,et al.2013.Characteristics andsignal detection method of accurately controlled routinelyoperated signal system.Journal of China University ofPetroleum(Edition of Natural Science)(in Chinese),37(1):50-55,69,doi:10.3969/j.issn.1673-5005.2013.01.008.
    Zelt C A,Smith R B.1992.Seismic traveltime inversion for 2-Dcrustal velocity structure.Geophys.J.Int.,108(1):16-34.
    Zhang X D,Bao Z.1998.Non staionary signal analysis&processing(in Chinese).Beijing:National Defense Industry Press.
    Zhao C L,Lu C,Hao T Y,et al.2013.A study of the highprecision modular lightweight small vibrator.Chinese J.Geophys.(in Chinese),56(11):3690-3698,doi:10.6038/cjg20131110.
    Zhuang C T.2002.A technical measure to study and predictdisastrous earthquakes occurring directly beneath big cities.Recent Developments in World Seismology(in Chinese),(8):35-37.
    陈颙,张蔚,陈翰森等.2006.地震雷达.地球物理学进展,21(1):1-5.
    陈章立,郑斯华,刘杰.2007.数字地震观测资料应用研究.北京:地震出版社.
    冯锐,庞庆衍,傅征祥等.1976.海城地震前后地震波速比的变化.地球物理学报,19(4):295-305.
    冯锐.1977.新丰江6.1级水库地震前后的波速比变化.地球物理学报,20(3):211-221.
    国家地震局科技监测司.1995.地震地形变观测技术.北京:地震出版社.
    胡昌华,周涛,夏启兵等.2002.基于MATLAB的系统分析与设计———时频分析.西安:西安电子科技大学出版社.
    赖晓玲,张先康,孙译.2006.张北地震区壳幔边界复杂性特征及其构造意义.地震学报,28(3):230-237.
    黎明晓,刘杰.2006.云南地区地震序列的波速比(Vp/Vs)异常研究.地震,26(1):26-34.
    刘希康,崔仁胜,王洪体等.2013.用Wigner-Hough变换检测精密可控震源信号.地震,33(3):33-42.
    彭朝勇,杨建思,薛兵等.2013.基于汶川主震及余震的预警参数与震级相关性研究.地球物理学报,56(10):3404-3415,doi:10.6038/cjg20131016.
    彭朝勇,杨建思,薛兵等.2015.用于地震预警的通用数据采集系统构建.地震,35(1):140-148.
    唐向宏,李奇良.2008.时频分析与小波变换.北京:科学出版社.
    王洪体,庄灿涛,薛兵等.2009.精密主动震源监测.地球物理学报,52(7):1808-1815,doi:10.3969/j.issn.0001-5733.2009.07.015.
    杨微,葛洪魁,王宝善等.2010.由精密控制人工震源观测到的绵竹5.6级地震前后波速变化.地球物理学报,53(5):1149-1157,doi:10.3969/j.issn.0001-5733.2010.05.016.
    杨微,王宝善,葛洪魁等.2013.精密控制机械震源特征及信号检测方法.中国石油大学学报(自然科学版),37(1):50-55,69,doi:10.3969/j.issn.1673-5005.2013.01.008.
    张贤达,保铮.1998.非平稳信号分析与处理.北京:国防工业出版社.
    赵春蕾,卢川,郝天珧等.2013.高精度组合式轻便小型可控震源的研究.地球物理学报,56(11):3690-3698,doi:10.6038/cjg20131110.
    庄灿涛.2002.探索预报大城市直下型灾害性地震的一种技术措施.国际地震动态,(8):35-37.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心