俯冲带地震诱发机制:研究进展综述
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
俯冲带作为地球循环体系的关键部位,具有构造活跃、地震多发以及地质条件复杂等特征。基于震源位置,俯冲带地震既可划分为板间和板内地震,也可分为浅源、中源和深源地震。俯冲带内的浅源地震包括板间地震和浅源板内地震,而中源和深源地震皆属于板内地震。在地球浅部,温度与压力低,浅源地震是由岩石发生脆性破裂或沿着先存断层发生不稳定摩擦滑移造成的。随着深度增加,温度和压力的增加使得流行于浅部的脆性和摩擦行为在无水条件下被强烈抑制,岩石从而表现为可抑制地震的韧性行为,使得中-深源地震的诱发机制有别于常规的脆性行为。随着研究的逐渐深入,人们了解到中源地震的诱发机制主要是脱水或与流体相关的致脆以及塑性剪切失稳,而深源地震的成因主要是相变致裂。然而,中-深源地震很可能是两种或两种以上机制共同作用的结果。例如,在中源深度既可能是流体相关的致脆导致脱水源区的脆性围岩产生地震,亦可能是脱水的蛇纹岩本身可能在流体孔隙压的作用下作粘滑滑移,而前者比后者更为重要。孕震带宽度大于"反裂隙模型"预测的亚稳态橄榄石冷核宽度的深源地震可能是由第一阶段的相变致裂和第二阶段的塑性剪切失稳诱发,而孕震带的实际宽度与预测宽度相当的深源地震则可能仅由相变致裂引起。只要过渡带内名义无水矿物中的结构水能释放出来,脱水致脆同样可能触发一些深源地震;而塑性剪切失稳不仅能在中-深源地震触发后的扩展阶段起着主导作用,而且还能单独触发一些中-深源地震,因此能够解释大多数反复发生的中-深源地震活动。
As an important part of the Earths circulation system,subduction zone is characterized by active mountain building,high-frequency earthquakes,and complex geological conditions.Earthquakes in subduction zones can be divided into inter- and intra-plate categories in terms of the hypocenter relative to the subducting slab,or shallow-(0~60 km),intermediate-(60~300 km),and deep-(≥300 km) depth earthquakes according to focal depth.Shallow earthquakes include interplate earthquakes and shallow inland intraplate earthquakes while both intermediate- and deep-depth earthquakes are intraplate earthquakes.Shallow earthquakes are caused by cracking of intact rocks and factional sliding along the preexisting faults because the shallow part of the Earth stays at low temperatures and low pressures where rocks are dominated by brittle behavior.At greater depths,however,both temperature and pressure are high,so rocks deform by ductile flow because brittle and frictional behavior is suppressed unless fluids are present to help push open the cracks.Thus the origin of intermediate- and deep-depth earthquakes should be different from that of shallow events.Two important mechanisms of intermediate-depth earthquakes have been recognized;dehydration embrittlement and plastic shear instability.The origin of deep-depth earthquakes is still enigmatic but most likely caused by phase transition-induced faulting.However,not all of intermediate- and deep-depth earthquakes can be simply interpreted by a single mechanism as a combination of multiple mechanisms may act together in the initiation and propagation of the earthquakes.Intermediate-depth earthquakes,for example,may be produced by fluid-related embrittlement in brittle wall rocks and/or by stick—slip along dehydrating antigorite-rich fault zones,depending on the magnitude of effective confining pressure.The deep-depth earthquakes such as the 1994 Bolivia earthquake,whose seismogenic zones are much wider than the cold core of metastable olivine,as predicted by anticrack faulting model,could be initiated by phase transitioninduced faulting and then propagated by plastic shear instability.The deep-depth earthquakes such as the 2013 Okhotsk earthquake,whose seismogenic zones are as wide as the cold core,may result totally from phase transitioninduced faulting alone.If water in nominally anhydrous minerals(e.g.,olivine,wadesleyite,and ringwoodite)has released,dehydration embrittlement may also trigger deep-depth earthquakes in the transition zone.In contrast,plastic shear instability,which can make its own contribution to the propagation of deep earthquakes,is often responsible for most of repeating deep earthquakes.
引文
邓起东,马冀,杜鹏.2014.青藏高原地震活动特征及当前地震活动形势.地球物理学报,57:2025~2042,doi:10.6038/cig20140701.
    干微,金振民,吴耀,赵素涛.2012.深源地震机理的回顾:现状与问题.地学前缘,19:15~29.
    嵇少丞.2009.地震与中国大陆形影相随.北京:科学出版社,1~200.
    邵同宾.2012.Paterson高温高压流变仪三轴压缩变形实验方法及其在岩石流变学中的应用.导师:宋茂双.北京:中国科学院大学硕士学位论文,1~114.
    邵同宾,嵇少丞,李建峰,王茜,宋茂双.2011a.Paterson高温高压流变仪及其在岩石流变学中的应用.大地构造与成矿学,35:457~476.
    邵同宾,嵇少丞,王茜.2011b.部分熔融岩石流变学.地质论评,57:851~869.
    邵同宾,宋茂双,嵇少丞,李建峰,王茜.2013.水对名义无水矿物变形的影响.大地构造与成矿学,37:138~163.
    Abers G A,Nakajima J,van Keken P E,Kita S,Hacker B R.2013.Thermal-petrological controls on the location of earthquakes within subducting plates.Earth Planet.Sci.Lett.,369~370:178~187.
    Andersen T,Austrheim H.2006.Fossil earthquakes recorded by pseudotachylytes in mantle peridolite from the Alpine subduction complex of Corsica.Earth Planet.Sci.Lett.,242:58~72.
    Andersen T,Austrheim H,Deseta N,Silkoset P,Ashwal L D.2014.Large subduction earthquakes along the fossil Moho in Alpine Corsica.Geology,42:395~398,doi:10.1130/G35345.1.
    Arkwright J,Rutter E,Brodie K,Llana-Funez S.2008.Role of porosity and dehydration reaction on the deformation of hot-pressed serpentinite aggregates.Journal of the Geological Society 165:639~649.
    Austrheim H,Andersen T.2004.Pseudotachylytes from Corsica:fossil earthquakes from a subduction complex.Terra Nova,16:193~197.
    Backofen W A.1972.Deformation Processing.Addison-Wesley,Reading,MA,326 p.
    Backofen W A.1973.Deformation Processing.Metallurgical Transactions,4:2679~2699,doi:10.1007/BF02644569.
    Basinski Z S.1957.The instability of plastic flow of metals at very low temperatures.Proc.R.Soc.London Ser.A,240:229~242.
    Basinski Z S.1960.The instability of plastic flow of metals at very low temperatures,Ⅱ.Aust.J.Phys.,13:354~358.
    Bilek S L,Lay T.2002.Tsunami earthquakes possibly widespread manifestations of frictional conditional stability.Geophys.Res.Lett.,29,doi:10.1029/2002GL015215.
    Bouchon M,Ihmle P.1999.Stress drop and frictional heating during the1994 deep Bolivia earthquake.Geophys.Res.Lett.,26:3521~3524.
    Brace W,Byerlee J.1966.stick—slip as a mechanism for earthquakes.Science,153:990~992.
    Braeck S,Podladchikov Y Y.2007.Spontaneous thermal runaway as an ultimate failure mechanism of materials.Phys.Rev.Lett.,98,doi:10.1103/PhysRevLett.98.095504.
    Branlund J M,Kameyama M C,Yuen D A,Kaneda Y.2000.Effects of temperature-dependent thermal diffusivity on shear instability in a viscoelastic zone:implications for faster ductile faulting and earthquakes in the spinel stability field.Earth Planet.Sci.Lett.,182:171~185.
    Bridgman P W.1936.Shearing phenomena at high pressure of possible importance for geology.The Journal of Geology,44:653~669.
    Bridgman P W.1945.Polymorphic transitions and geological phenomena.Am.J.Sci.,243a:90~97.
    Brudzinski M R,Thurber C H,Hacker B R,Robert Engdahl E.2007.Global prevalence of Double Benioff Zones.Science,316:1472~1474.doi:10.1126/science.1139204.
    Burnley P C,GreenⅡH W.1989.Stress dependence of the mechanism of the olivine—spinel transformation.Nature,338:753~756.
    Burnley P C,GreenⅡH W,Prior D J.1991.Faulting associated with the olivine to spinel transformation in Mg_2GeO_4 and its implications for deep-focus earthquakes.J.Geophys.Res.,96:425~443.
    Byerlee J D.1978.Friction of rocks.Pure and applied geophysics,116:615~626.
    Campione M,Capitani G C.2013.Subduction-zone earthquake complexity related to frictional anisotropy in antigorite.Nat.Geosci.,doi:10.1038/NGE01905.
    Carter N L,Ave Lallemant H G.1970.High temperature flow of dunile and peridotite.Geol.Soc.Am.Bull.,81:2181~2202.
    Castle J C,Creager K C.1998.NW Pacific slab rheology,the seismicily cutoff,and the olivine to spinel phase change.Earth Planets and Space,50:977~985.
    Chen Haydn S.1973.Plastic flow in metallic glasses under compression.Scripta.Metall.,7:931~936.
    Chernak L J,Hirth G.2010.Deformation of antigorite serpentinite at high temperature and pressure.Earth Planet.Sci.Lett.,296:23~33.
    Chernak L J,Hirth G.2011.Syndeformational antigorite dehydration produces stable fault slip.Geology,39:847~850.
    Chollet M,Daniel I,Koga K T,Morard G,van de Moortele B.2011.Kinetics and mechanism of antigorite dehydration:implications for subduction zone seismicity.J.Geophys.Res.,116,B04203,doi:10.1029/2010JB007739.
    Christensen N I.1972.The abundance of serpentinites in the oceanic crust.J.Geol.,80:709~719.
    Deseta N,Andersen T B,Ashwal L D.2014.A weakening mechanism for intermediate-depth seismicity?Detailed petrographic and microtexlural observations from blueschist facies pseudotachylytes,Cape Corse,Corsica.Tectonophysics,610:138~149.
    Dieterich J H.1979.Modeling of rock friction:1.Experimental results and constitutive equations.J.Geophys.Res.,84:2161~2168.
    Dieterich J H.Constitutive properties of faults with simulated gouge.In:Carter N L,Friedman M,and Stearns D W.eds.Mechanical Behavior of Crustal Rocks,the Handin Volume.Washington D C:AGU,24:103~120.
    Dixon T H,Moore J C.2007.The Seismogenic Zone of Subduction Thrust Faults,Margins Theoretical Institute and Experimental Earth Science Series.New York:Columbia University Press,1~692.
    Dobson D P,Meredith P G,Boon S A.2002.Simulation of subduction zone seismicity by dehydration of serpentine.Science,298:1407~1410.
    Dobson D P,Meredith P G,Boon S A.2004.Detection and analysis of microseismicity in multi anvil experiments.Phys.Earth Planet.Int.,143:337~346.
    Dupas-Bruzek C,Sharp T G,Rubie D C,Durham W B.1998.Mechanisms of transformation and deformation in Mg1.8Fe0.2SiO_4olivine and wadsleyite under non-hydrostatic stress.Phys.Earth Planet.Int.,108:33~48.
    Evison F F.1967.On the occurrence of volume change at the earthquake source.Bull.Seismol.Soc.Am.,57:9~25.
    Frohlich C.1989.The nature of deep-focus earthquakes.Ann.Rev.Earth Planet.Sci.,17:227~254.
    Frohlich C.2006.Deep earthquakes.Cambridge:Cambridge University Press,1~574.
    Gleason G C,GreenⅡH W.2009.A general test of the hypothesis that transformation-induced faulting cannot occur in the lower mantle.Phys.Earth Planet.Int.,172:91~103.doi:10.1016/j.pepi.2008.06.019.
    Grace Barcheck C,Wiens D A,van Kenken P E,Hacker B R.2012.The relationship of intermediate-and deep-focus seismicity to the hydration and dehydration of subducting slabs.Earth Planet.Sci.Lett.,349~350:153~160.
    Grand S P.1994.Mantle shear structure beneath the Americas and surrounding oceans.J.Geophys.Res.,99:11591~11622.
    GreenⅡH W.1984.How and Why does olivine transform to spinel?Geophys.Res.Lett.,1:817~820.
    GreenⅡH W.2005.New light on deep earthquakes.In:Our Everchanging Earth,special edition(electronic version),Scientific American,97~105,www.sciam.com.
    GreenⅡH W.2007.Shear instabilities accompanying high-pressure phase transformations and the mechanics of deep earthquakes.Proceedings of the National Academy of Sciences,104:9133~9138.doi:10.1073/pnas.0608045104.
    GreenⅡH W,Burnley P C.1989.A new self-organizing,mechanism for deep-focus earthquakes.Nature,341:733~737.
    GreenⅡH W,Burnley P C.1990.The failure mechanism for deep-focus earthquakes.In:Knipe R I and Rutter E M.eds.Deformation Mechanisms,Rheology and Tectonics,54:133~141.London:Geol.Soc.Spec.Publ.
    GreenⅡH W,Houston H.1995.The mechanics of deep earthquakes.Annu.Rev.Earth Planet.Sci.Lett.,23:169~213.
    GreenⅡH W,Marone C.2002.Instability of deformation.In:Karato S-I,Wenk H.eds.Reviews in Mineralogy and Geochemistry,Plasticity of Minerals and Rocks,vol.51.Oxford:Blackwell,181~199.
    GreenⅡH W,Scholz C H,Tingle T N,Young T E,Koczynski T A.1992.Acoustic emissions produced by anticrack faulting during the olivine→spine transformation.Geophys.Res.Lett.,19:789~792.
    GreenⅡH W,Young T E,Walker D,Scholz C H.1990.Anticrackassociated faulting at very high pressure in natural olivine.Nature,348:720~722.
    GreenⅡH W,Zhou Yi.1996.Transformation-induced faulting requires an exothermic reaction and explains the cessation of earthquakes at the base of the mantle transition zone.Tectonophysics,256:39~56.
    Griggs D T.1954.High-pressure phenomena with applications to geophysics.In:Ridenour L N.ed.Modern Physics for the Engineer.New York:McGraw-Hill,272~305.
    Griggs D T,Baker D W.1969.The origin of deep-focus earthquakes.In:Mark H and Fernbach S.eds.Properties of Matter under Unusual Conditions,23~42,John Wiley,New York.
    Griggs D T,Handin J.1960.Observations on fracture and a hypothesis of earthquakes.Geol.Soc.Am.:Mem.,79:347~364,doi:10.1130/MEM79-p347.
    Griggs D T,Turner F J,Heard H C.1960.Deformation of rocks at 500°to 800℃.In:Griggs D T,and Handin J.eds.Rock Deformation(A Symosium),79:39~104.
    Hacker B R.2003.Subduction factory 2.Are intermediate-depth earthquakes in subducting slabs linked to metamorphic dehydration reactions?J.Geophys.Res.,108,B1,2030,doi:10.1029/2001JB001129.
    Hasegawa A.2011.Seismicity,Subduction Zone.Encyclopedia of Solid Earth Geophysics:1305~1315.
    Hasegawa A,Nakajima J,Umino N,Miura S.2005.Deep structure of the northeastern Japan arc and its implications for crustal deformational shallow seismic activity.Tectonophysics,403:59~75.
    Healy D,Reddy S M,Timms N E,Gray E M,Brovarone A V.2009.Trench-parallel fast axes of seismic anisotropy due to fluid filled cracks in subducting slabs.Earth Planet.Sci.Lett.,283:75~86.
    Hilairet N,Reynard B,Wang Yanbin,Daniel I,Merket S,Nishiyama N,Petitgirard S.2007.High-pressure creep of serpentine,interseismic deformation,and initiation of subduction.Science,318:1910~1913.
    Hirauchi K-I,Katayama I.2013.Rheological contrast between serpentine species and implications for slab-mantle wedge decoupling.Tectonophysics,608:545~551.
    Hirauchi K-I,Katayama I,Uehara S,Miyahara M,Takai Y.2010.Inhibition of subduction thrust earthquakes by low-temperature plastic flow in serpentine.Earth Planet.Sci.Lett.,295:349~357,doi:10.1016/j.epsl.2010.04.007.
    Hobbs B E,Ord A.1988.Plastic instabilities:implications for the origin of intermediate and deep focus earthquakes.J.Geophys.Res.,93:10521~10540.
    Hobbs B E,Ord A,Teyssier C.1986.Earthquakes in the Ductile Regime?Pageoph,124:309~336.
    Homburg J.2013.Field and throretical investigations of strain localization:effects of mineralogy,shear heating and grain size evolution on deformation in the Earth.Columbia University,PhD thesis,1~170.
    Houston H.1993.The non-double-couple component of deep earthquakes and the width of the seismogenic zone.Geophys.Res.Lett.,20:1687~1690.
    Houston H.2007.Deep earthquakes.In:Schubert G(Ed),Treatise on Geophysics,volume 4.Earthquake Seismology,Elsevier,Amsterdam,321~350.
    Hubbert M K,Rubey W W.1959.Role of fluid pressure in mechanics of overthrusl faulting I.Mechanics of fluid-filled porous solids and its application to overthrusl faulting.Geol.Soc.Am.Bull.,70:115~166.
    Hyndman R D,Wang Kelin,Yamano M.1995.Thermal constraints on the seisrnogenic portion of the southwestern Japan subduction thrust.J.Geophys.Res.,100:15373~15392.
    Hyndman R D,Yamano M,Oleskevich D A.1997.The seisrnogenic zone of subduction thrust faults.The Island Arc,6:244~260.
    Iidaka T,Furukawa Y.1994.Double seismic zone for deep earthquakes in the Izu—Bonin subduction zone.Science,263:1116~1118.
    Iidaka T,Suetsugu D.1992.Seismological evidence for metastable olivine inside a subducting slab.Nature,356:593~595.
    Iio Y,Sagiya T,Kobayashi Y.2004.Origin of the concentrated deformation zone in the Japanese Islands and stress accumulation process of intraplate earthquakes.Earth Planets Space,56:831~842.
    Ji Shaocheng,Li A Wei,Wang Qian,Long Changxing,Wang Hongcai,Marcotte D,Salisbury M H.2013.Seismic velocities,anisotropy,and shear-wave splitting of antigorite serpentinites and tectonic implications for subduction zones.J.Geophys.Res.,118:1015~1037,doi:10.1002/jgrb.50110.
    Ji Shaocheng,Xia Bin.2002.Rheology of polyphase earth materials.Montreal:Polytechnic International Press,1~259.
    Ji Shaocheng,Zhao Pinglao.1994.Layered rheological structure of subducting oceanic lithosphere.Earth Planet.Sci.Lett.,124,75~94.
    Jin Denghui,Karato S,Obata M.1998.Mechanisms of shear localization in the continental lithosphere:inference from the deformation microstructures of peridotites from the Ivrea zone,northwestern Italy.J.Struct.Geol.,20:195~209.
    John T,Medvedev S,Rupke L H,Andersen T B,Podladchikov Y Y,Austrheim H.2009.Generation of intermediate-depth earthquakes by self-localizing thermal runaway.Nat.Geosci.,2:137~140.
    John T,Schenk V.2006.Interrelations between intermediate-depth earthquakes and fluid flow within subducting oceanic plates:constraints from eclogite facies pseudotachylytes.Geology,34:557~560.
    Jung H,GreenⅡH W.2004.Experimental faulting of serpentinite during dehydration:implications for earthquakes,seismic lowvelocity zones,and anomalous hypocenter distributions in subduction zones.Int.Geol.Rev.,46:1089~1102.
    Jung H,GreenⅡH W,Dobrzhinetskaya L.2004.Intermediate-depth earthquake faulting by dehydration embrittlement with negative volume change.Nature,428:545~549.
    Jung H,Katayama I,Jiang Zhenting,Hiraga T,Karato S.2006.Effect of water and stress on the lattice-preferred orientation of olivine.Tectonophysics,421:1~22.
    Kanamori H.1977.Seismic and aseismic slip along subduction zones and their tectonic implications.In Ewing M(editor),Island Arcs,Deep Sea Trenches and Back-Arc Basins.Washington,DC:AGU,163~174.
    Kanamori H.1986.Rupture process of subduction-zone earthquakes.Annu.Rev.Earth Planet.Sci.,14:293~322.
    Kanamori H,Anderson D,Heaton T.1998.Frictional melting during the rupture of the 1994 Bolivian earthquake.Science,279:839~842.
    Kanamori H,Astiz L.1985.The 1983 Akita-Oki earthquake(Mw=7.8)and its implications for systematics of subduction earthquakes.Earthquake Predict.Res.,3:305~317.
    Karato S-I.1998.Effects of pressure on plastic deformation of polycrystalline solids:some geological applications.In:Wentzcovitch R M,Hemley R J,Nellis W J,Yu P Y(Editors),High Pressure Research in Materials Research.Materials Research Society,Warrendale,PA,3~14.
    Karato S-I.2008.Deformation of earth materials:an introduction to the rheology of solid earth.Cambridge:Cambridge University Press,1~463.
    Karato S-I,Riedei M R,Yuen D A.2001.Rheological structure and deformation of subducted slabs in the mantle transition zone:implications for mantle circulation and deep earthquakes.Phys.Earth Planet.Int.,127:83~108.
    Kawakatsu H.1991.Insignificant isotropic component in the moment tensor of deep earthquakes.Nature,351:50~53.
    Kelemen P B,Hirth G.2007.A periodic shear-heating mechanism for intermediate-depth earthquakes in the mande.Nature,446:787~790.
    Kenner S,Segall P.2000.A mechanical model for intraplate earthquakes:Application to the New Madrid.Science,289:2329~2332.
    Kikuchi M,Kanamori H.1994.The mechanism of the deep Bolivia earthquake of June 9,1994.Geophys.Res.Lett.,22:2341~2344.
    Kirby S.1987.Localized polymorphic phase transitions in high-pressure faults and applications to the physical mechanism of deep earthquakes.J.Geophys.Res.,92:13789~13800.
    Kirby S,Engdahl R E,Denlinger R.1996a.Intermediate-depth intraslab earthquakes and arc volcanism as physical expressions of crustal and uppermost mande metamorphism in subducting slabs.Subduction:top to bottom.Geophysical Monograph,96:195~214.
    Kirby S,Stein S,Okal E A,Rubie D C.1996b.Metastable mantle phase transformations and deep earthquakes in subducting oceanic lithosphere.Rev.Geophys.,34:261~306.
    Kita S,Okada T,Nakajima J,Matsuzawa T,Hasegawa A.2006.Existence of a seismic belt in the uppeT plane of the double seismic zone extending in the along-arc direction at depths of 70~100 km beneath NE Japan.Geophys.Res.Lett.,33,L24310,doi:10.1029/2006GL028239.
    Knopoff L,Randall M J.1970.The compensated linear-vector dipole:a possible mechanism for deep earthquakes.J.Geophys.Res.,75:4957~4963.
    Kubin L P,Jouffrey B.1971.On low temperature plastic instability in pure niobium single crystals.Philos.Mag.,24:437~449.
    Lay T,Kanamori H.1981.Fundamental studies,laboratory investigations and models.In Ewing M,Simpson D W,and Richards(editors),An International Review,Earthquake Prediction.Washington,D C:AGU,579~592.
    Matsubara M,Hayashi H,Obara K,Kasahara K.2005.Low-velocity oceanic crust at the top of the Philippine Sea and Pacific plates beneath the Kanto region,central Japan,imaged by seismic tomography.J.Geophys.Res.,110,B12304,doi:10.1029/2005JB003673.
    Meade C,Jeanloz R.1991.Deep-focus earthquakes and recycling of water into the Earth's mantle.Science,252:68~72.
    Mishra O P,Zhao Dapeng.2004.Seismic evidence for dehydration embritdement of subducting Pacific slab.Geophys.Res.Lett.,31,doi:10.1029/2004GL019489.
    Miura M,Sato T,Hasegawa A,Suwa Y,Tachibana K,Yui S.2004.Strain concentration zone along the volcanic front derived by GPS observations in NE Japan arc.Earth Planets Space,56:1347~1355.
    Murrell S A F,Ismail I A H.1976.The effect of decomposition of hydrous minerals on the mechanical properties of rocks at high pressures and temperatures.Tectonophysics,31:207~258.
    Nakajima J,Hasegawa A.2007.Deep crustal structure along the Niigata—Kobe tectonic zone,Japan:its origin and segmentation.Earth Planets and Space,59:e5~e8.
    Nakajima J,Matsuzawa T,Hasegawa A,Zhao Dapeng.2001.Threedimensional structure of Vp,Vs,and Vp/Vs beneath northeastern Japan:implications for arc magmatism and fluids.J.Geophys.Res.,106:843~857.
    Nakajima J,Tsuji Y,Hasegawa A.2009.Seismic evidence for thermally-controlled dehydration reaction in subducting oceanic crust.Geophys.Res.Lett.,36,L03303,doi:10.1029/2008GL036865.
    Nakajima J,Yoshida K,Hasegawa A.2013.An intraslab seismic sequence activated by the 2011 Tohoku-oki earthquake:evidence for fluid-related embritdement.J.Geophys.Res.,118:3492~3505,doi:10.1002/jgrb.50246.
    Ning Jieyuan,Zang Shaoxian.1999.On the generation of deep focus earthquakes in subduction zones.Acta Seismologica Sinica,12:573~583.
    Obata M,Karato S.1995.Ultramafic pseudotachylite from the Balmuccia peridotite,Ivrea Verbano Zone,northern Italy.Tectonophysics,242:313~328,doi:10.1016/0040-1951(94)00228-2.
    Ogawa M.1987.Shear instability in a viscoelastic material as the cause of deep focus earthquakes.J.Geophys.Res.,92:13801~13810.
    Oleskevich D A,Hyndman R D,Wang Kelin.1999.The updip and downdip limits to great subduction earthquakes:thermal and structural models of Cascadia,south Alaska,SW Japan,and Chile.J.Geophys.Res.,104:14965~14991.
    Omori S,Komabayashi T,Maruyama S.2004.Dehydration and earthquakes in the subducting slab:empirical link in intermediate and deep seismic zones.Phys.Earth Planet.Int.,146:297~311.
    Orowan E.1960.Mechanism of seismic faulting.Geol.Soc.Am.Mem.,79:323~345.
    Peacock S M.2001.Are the lower planes of double seismic zones caused by serpentine dehydration in subduction oceanic mantle?Geology,29:299~302.
    Pearson D G,Brenker F E,Nestola F,McNeill J,Nasdala L,Hutchison M T,Matveev S,Mather K,Silversmit G,Schmitz S,Vekemans B,Vincze L.2014.Hydrous mantle transition zone indicated by ringwoodite included within diamond.Nature,507:221~224,doi:10.1038/nature13080.
    Perrillat J P,Daniel I,Koga K T,Reynard B,Cardon H,Crichton W A.(2005).Kinetics of antigorite dehydration:a real-time X-ray diffraction study.Earth Planet.Sci.Lett.,236(3):899~913.
    Poirier J-P.1980.Shear localization and shear instability in materials in the ductile field.J.Struct.Geol.,2:135~142.
    Prieto G A,Beroza G C,Barrett S A,Lopez G A,Florez M.2012.Earthquake nests as natural laboratories for the study of intermediatedepth earthquake mechanics.Tectonophysics,570~571:42~56.
    Prieto G A,Florez M,Barrett S A,Beroza G C,Pedraza P,Blanco J F,Poveda E.2013.Seismic evidence for thermal runaway during intermediate-depth earthquake rupture.Geophys.Res.Lett.,40,6064~6068,doi:10.1002/2013GL058109.
    Raleigh C B,Lee W.1969.Sea-floor spreading and island arc tectonics,Proceedings of the andesite conference.Bulletin-Oregon,Department of Geology and Mineral Industries,99~110.
    Raleigh C B,Paterson M S.1965.Experimental deformation of serpentinite and its tectonic implications.J.Geophys.Res.,70:3965~3985.
    Renshaw C E,Schulson E M.2013.Are intermediate depth earthquakes caused by plastic faulting?Earth Planet.Sci.Lett.,382:32~37,doi:10.1016/j.epsl.2013.09.006.
    Reynard B,Nakajima J,Kawakatsu H.2010.Earthquakes and plastic deformation of anhydrous slab mantle in double Wadati-Benioff zones.Geophys.Res.Lett.,37,L24309,doi:10.1029/2010GL045494.
    Richard G,Monnereau M,Rabinowicz M.2007.Slab dehydration and fluid migration at the base of the upper mantle:implications for deep earthquake mechanisms.Geophys.J.Int.,168:1291~1304,doi:10.1111/j.1365-246X.2006.03244.x.
    Riggs E M,GreenⅡH W.2005.A new class of microstructures which lead to transformation-induced faulting in magnesium germinate.J.Geophys.Res.,110,B03202,doi:10.1029/2004JB003391.
    Roberts D C,Turcotte D L.2000.Earthquakes:friction of a plastic instability?Geophysical Monograph Series,120:97~103.
    Rogers H C.1979.Adiabatic plastic deformation.Annu.Rev.Mater.Sci.,9:283~311.
    Rutter E H,Llana-Funez S,Brodie K H.2009.Dehydration and deformation of intact cylinders of serpentinite.J.Struct.Geol.,31:29~43.
    Sagiya T,Miyazaki S,Tada T.2000.Continuous GPS array and presentday crustal deformation of Japan.Pure and Applied Geophysics,157:2303~2322.
    Sawai M,Katayama I,Hamada A,Maeda M,Nakashima S.2013.Dehydration kinetics of antigorite using in situ high-temperature infrared microspectroscopy.Phys.Chem.Minerals.,40:319-330,doi:10.1007/s00269-013-0573-9.
    Schmandt B,Jacobsen S D,Becker T W,Liu Z X,Dueker K G.2014.Dehydration melting at the top of the lower mantle.Science,344:1265~1268.
    Scholz C H.2002.The mechanics of earthquakes and faulting.Cambridge University Press,1~471.
    Schubnel A,Brunei F,Hilairet N,Gasc J,Wang Yanbin,Green H W.2013.Deep-focus earthquake analogs recorded at high pressure and temperature in the laboratory.Science,341,doi:10.1126/science.1240206.
    Seno T.2005.Variation of downdip limit of the seismogenic zone near the Japanese islands:implications for the serpentinization mechanism of the forearc mantle wedge.Earth Planet.Sci.Lett.,231:249~262.
    Shao Tongbin,Ji Shaocheng,Kondo Y,Michibayashi K,Wang Qian,Xu Zhiqin,Sun Shengsi,Marcotte D,Salisbury M H.2014.Antigorite-induced seismic anisotropy and implications for deformation in subduction zones and the Tibetan Plateau.J.Geophys.Res.,119,2068~2099,doi:10.1002/2013JB010661.
    Shiina T,Nakajima J,Matsuzawa T.2013.Seismic evidence for high pore pressures in the oceanic crust:implications for fluid-related embrittlement.Geophys.Res.Lett.,40:2006~2010.
    Silkoset P.2013.Microstructure of ultramaflc pseudotachylyte from Alpine Corsica——Insights into earthquakes in mantle lithosphere.Master thesis:University of Oslo,Norway.
    Silver P G,Beck S L,Wallace T C,Meade C,Myers S C,James D E,Kuehnel R.1995.Rupture characteristics of the deep Bolivian earthquake of 9 June 1994 and the mechanism of deep-focus earthquakes.Science,268:69~73.
    Stern R J.2002.Subduction zones.Rev.Geophys.,40,doi:10.1029/2001RG000108.
    Sung C M.1979.Kinetics of the olivine—spinel transition under high pressure and temperature:experimental results and geophysical implications.In:Timmerhaus K D and Barber M S.eds.HighPressure Science and Technology,31~41.New York:Plenum.
    Sung C M,Burns R G.1976.Kinetics of the olivine→spinel transition:implications to deep-focus earthquake genesis.Earth Planet.Sci.Lett.,32:165~170.
    Suwa Y,Miura S,Hasegawa A,Sato T,Tachibana K.2006.Interplate coupling beneath NE Japan inferred from three-dimensional displacement field.J.Geophys.Res.,111,doi:10.1029/2004JB003203.
    Takahashi M,Uehara S-I,Mizoguchi K,Shimizu I,Okazaki K,Masuda K.2011.On the transient response of serpentine(antigorite)gouge to stepwise changes in slip velocity under high-temperature conditions.J.Geophys.Res.,116,B10405:10.1029/2010JB008062.
    Tibi R,Estabrook C H,Bock G.1999.The 1996 June 17 Flores Sea and 1994 March 9 Fiji—Tonga earthquakes:source processes and deep earthquake mechanisms.Geophys.J.Int.,128:625~642.
    Tingle T N,GreenⅡH W,Borch R S.1991.High temperature creep experiments on the olivine and spinel polymorphs of Mg_2GeO_4:implications for the rheology of the Earth's mantle.Eos.,Trans.,AGU,72,297.
    Tingle T N,GreenⅡH W,Scholz C H,Koczynski T A.1993.The rheology of faults triggered by the olivine—spinel transformation in Mg_2GeO_4 and its implications for the mechanism of deep-focus earthquakes.J.Struct.Geol.,15:1249~1256.
    Tsuji T,Tokuyama H,Costa Pisani P,Moore G.2008.Effective stress and pore pressure in the Nankai accretionary prism off the Muroto Peninsula,southwestern Japan.J.Geophys.Res.,113,B11401,doi:10.1029/2007JB005002.
    Uehida N,Nakajima J,Hasegawa A,Matsuzawa T.2009.What controls interplate coupling?:Evidence for abrupt change in coupling across a border between two overlying plates in the NE Japan subduction zone.Earth Planet.Sci.Lett.,283:111~121.
    Ueda T,Obata M,Di Toro G,Kanagawa K,Ozawa K.2008.Mantle earthquakes frozen in mylonitized ultramafic pseudotachylytes of spinel—lherzolite facies.Geology,36:607~610,doi:10.1130/G24739A.1.
    Uyeda S,Kanamori H.1979.Back-arc opening and the mode of subduction.J.Geophys.Res.,84:1049~1061.
    Vaisnys J R,Pilbeam C C.1976.Deep-earthquake initiation by phase transformations.J.Geophys.Res.,81:985~988.
    Van der Hilst R.1995.Complex morphology of subducted lithosphere in the mantle beneath the Tonga trench.Nature,374:154~157.
    van Keken P E,Hacker B R,Syracuse E M,Abers G A.2011.Subduction factory:4.Depth-dependent flux of H2O from subducting slabs worldwide.J.Geophys.Res.,116,B01401,doi:10.1029/2010JB007922.
    Vrolijk P.1990.On the mechanical role of smectite in subduction zones.Geology,18:703~707.
    Wadati K.1928.Shallow and deep earthquakes.Geophy.Mag.,1:161~202.
    Wiens D A.2001.Seismological constraints on the mechanism of deep earthquakes:temperature dependence of deep earthquake source properties.Phys.Earth Planet.Int.,127:145~163.
    Wiens D A,McGuire J J,Shore P J.1993.Evidence for transformational faulting from a deep double seismic zone in Tonga.Nature,364:790~793.
    Wiens D A,McGuire J J,Shore P J,Bevis M G,Draunidalo K,Prasad G,Helu S P.1994.A deep earthquake aftershock sequence and implications for the rupture mechanism of deep earthquakes.Nature,372:540~543.
    Winter R E.1975.Adiabatic shear of titanium and polymethylmethacrylate.Philos.Mag.,31:765~773.
    Xia Gang.2013.Experimental studies on dehydration embrittlement of serpentinized peridotite and the effect of pressure on creep of olivine.University of California,Riverside,PhD thesis,1~121.
    Yamanaka Y,Kikuchi M.2004.Asperity map along the subduction zone in northeastern Japan inferred from regional seismic data.J.Geophys.Res.,109,doi:10.1029/2003JB002683.
    Yamasaki T,Seno T.2003.Double seismic zone and dehydration embrittlement of the subducting slab.J.Geophys.Res.,108,doi:10.1029/2002JB001918.
    Yeats R.2012.Active faults of the world.Cambridge University Press,1~621.
    Yu Wen-che,Wen Lianxing.2012.Deep-focus repeating earthquakes in the Tonga—Fiji subduction zone.Bulletin of the Seismological Society of America,102:1829~1849,doi:10.1785/0120110272.
    Zhan Zhongwen,Kanamori H,Tsai V C,Helmberger D V,Wei Shengji.2014.Rupture complexity of the 1994 Bolivia and 2013 Sea of Okhotsk deep earthquakes.Earth Planet.Sci.Lett.,385:89~96.
    Zhang Junfeng,GreenⅡH W,Bozhilov K,Jin Zhenmin.2004.Faulting induced by precipitation of water at grain boundaries in hot subducting oceanic crust.Nature,428:633~636.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心