用压缩感知方法研究大地震的破裂过程——方法与研究进展
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
通过观测方法来研究大地震的破裂过程是认识地震破裂物理规律最重要的手段之一.本文较为详细地介绍了基于稀疏反演理论的压缩感知方法及其在研究大地震破裂过程中不同频率能量释放的时空分布中的应用,着重介绍了采用压缩感知算法所获得的俯冲带特大逆冲型地震与频率及深度相关的能量释放过程,并讨论了该过程与随深度变化的同震断层滑移量和早期余震分布之间的关系.这为认识俯冲板块表面随深度变化的摩擦性质和俯冲带大地震的破裂规律提供了重要的观测结果.最后本文讨论了通过观测手段研究大地震破裂过程的现状和未来,并展望了压缩感知算法在研究地震破裂能量释放及其他地震学和地球物理学领域中的应用.
The use of observational methods to investigate great earthquake rupture processes has been one of the most important tools to study earthquake rupture physics.This review article gave a fairly detailed description about the compressive sensing technique,a method based on sparse inverse theory,and its application in studying the spatial and temporal distribution of seismic radiation at different frequencies during great earthquake ruptures.In particular,the main results about the frequency-and depth-dependent seismic radiation during rupture processes of subduction zone megathrust earthquakes that were revealed by the compressive sensing technique were reviewed as well as its correlation with depth-dependent co- seismic slip and early aftershocks distribution.These may provide important observational results for understanding the frictional properties of the subducting slab interface and rupture mechanisms of subduction zone great earthquakes.Finally,the current status and future directions on studying earthquake rupture process using observational methods were discussed.Some perspective researches about the use of the compressive sensing technique for studying seismic radiation during earthquake ruptures were also discussed as well as its application in some other fields in seismology and geophysics.
引文
[1]Walker K T,Shearer P M.Illuminating the near-sonic rupture velocities of the intracontinental Kokoxili Mw7.8and Denali fault Mw 7.9strike-slip earthquakes with global P wave back projection imaging[J].J geophys Res,2009,114:B02304;doi:10.1029/2008JB005738.
    [2]Ishii M,Shearer P M,Houston H,et al.Extent,duration and speed of the 2004 Sumatra-Andaman earthquake imaged by the Hi-Net array[J].Nature,2005,435:933-936.
    [3]Yao H,Shearer P M,Gerstoft P.Subevent location and rupture imaging using iterative back-projection for the 2011Tohoku Mw 9.0earthquake[J].Geophys J Int,2012,190:1 152-1 168.
    [4]Olson A H,R J Apsel.Finite faults and inverse theory with applications to the 1979 Imperial Valley earthquake[J].Bull Seismo Soc Amer,1982,72(6A):1 969-2 001.
    [5]Mendoza C,Hartzell S H.Aftershock patterns and main shock faulting[J].Bull Seismo Soc Amer,1988,78(4):1 438-1 449.
    [6]Yao Zhenxing,Ji Chen.The inverse problem of finite fault study in time domain[J].Chinese Journal of Geophysics,1997,40:691-701.姚振兴,纪晨.时间域内有限地震断层的反演问题[J].地球物理学报,1997,40:691-701.
    [7]Ji C,Wald D J,Helmberger D V.Source description of the 1999Hector Mine,California,earthquake,part I:Wavelet domain inversion theory and resolution analysis[J].Bull Seismo Soc Amer,2002,92(4):1 192-1 207.
    [8]张勇,许力生,陈运泰.2010年青海玉树地震震源过程[J].中国科学:地球科学,2010,40(7):819-821.
    [9]王卫民,李丽,赵连锋,等.2003年2月24日新疆伽师Ms6.5级地震震源破裂过程研究[J].地球物理学报,2005,48(2):343-351.
    [10]郝金来,王卫民,姚振兴.2011年3月11日日本东北沿海Mw9.0级地震震源破裂过程[J].中国科学:地球科学,2011,41:745-749.
    [11]Uchide T,Yao H,Shearer P.Spatio-temporal distribution of fault slip and high-frequency radiation of the 2010El Mayor-Cucapah,Mexico earthquake[J].J Geophys Res,2013,118(4):1 546-1 555.
    [12]Hartzell S H.Earthquake aftershocks as Green's functions[J].Geophys Res Lett,1978,5(1):1-4.
    [13]Ishii M,Shearer P M,Houston H,et al.Teleseismic P wave imaging of the 26 December 2004 SumatraAndaman and 28 March2005 Sumatra earthquake ruptures using the Hi-net array[J].J geophs Res,2007,112:B11307;doi:10.1029/2006JB004700.
    [14]Xu Y,Koper K D,Sufri O,et al.Rupture imagining of the Mw 7.9 12 May 2008 Wenchuan earthquake from back projection of teleseismic P-waves[J].Geochem Geophys Geosyst,2009,10:Q04006;doi:10.1029/2008GC002335.
    [15]Zhang H,Ge Z.Tracking the rupture of the 2008Wenchuan Earthquake by using the relative backprojection method[J].Bull Seismo Soc Amer,2010,100(5B):2 551-2 560.
    [16]Zhang H,Ge Z,Ding L.Three sub-events composing the 2011off the Pacific coast of Tohoku Earthquake (Mw 9.0)inferred from rupture imaging by back projecting teleseismic P waves[J].Earth Planets Space,2011,63:595-598.
    [17]Wang D,Mori J.Rupture process of the 2011off the Pacific coast of Tohoku earthquake(Mw 9.0)as imaged with back-projection of teleseismic P-waves[J].Earth Planets Space,2011,63:603-607.
    [18]Kiser E,Ishii M,Langmuir C H,et al.Insights into the mechanism of intermediate-depth earthquakes from source properties as imaged by back-projection of multiple seismic phases[J].J Geophys Res,2011,16:B06310;doi:10.1029/2010JB007831.
    [19]Meng L,Inbal A,Ampuero JP.A window into the complexity of the dynamic rupture of the 2011Mw 9Tohoku-Oki earthquake[J].Geophys Res Lett,2011,38:L00G07;doi:10.1029/2011GL048118.
    [20]Schmidt R O.Multiple emitter location and signal parameter estimation[J].IEEE Trans Antennas Propag,1986,34:276-280.
    [21]Wang D,J Mori.Frequency-dependent energy radiation and fault coupling for the 2010 Mw8.8Maule,Chile,and 2011 Mw9.0 Tohoku,Japan,earthquakes[J].Geophys Res Lett,2011,38:L22308;doi:10.1029/2011GL049652.
    [22]Koper K D,Hutko A R,Lay T.Along-dip variation of teleseismic short-period radiation from the 11March2011Tohoku earthquake(Mw 9.0)[J].Geophys Res Lett,2011,38:L21309;doi:10.1029/2011GL049689.
    [23]Yao H,Gerstoft P,Shearer P M,et al.Compressive sensing of the Tohoku-Oki Mw 9.0 earthquake:Frequency-dependent rupture modes[J].Geophys Res Lett,2011,38(20):L20310;doi:10.1029/2011GL049223.
    [24]Donoho D.Compressed sensing[J].IEEE Trans Inf Theory,2006,52:1 289-1 306.
    [25]Candès E J,Romberg J,Tao T.Robust uncertainty principles:Exact signal reconstruction from highly incomplete frequency information[J].IEEE Trans Inf Theory,2006,52:489-509.
    [26]Malioutov D M,Cetin M,Willsky A S.A sparse signal reconstruction perspective for source localization with sensor arrays[J].IEEE Trans Signal Process,2005,53:3 010-3 021.
    [27]Lustig M,Donoho D L,Pauly J M.Sparse MRI:The application of compressed sensing for rapid MR imaging[J].Magn Reson Med,2007,58:1 182-1 195.
    [28]Yamashita T.High-frequency acceleration radiated by unsteadily propagating cracks and its near-source geometrical attenuation[J].J Phys Earth,1983,31(1):1-32.
    [29]Sato T.Seismic radiation from circular cracks growing at variable rupture velocity[J].Bull Seismo Soc Amer,1994,84(4):1 199-1 215.
    [30]Spudich P,Frazer L N.Use of ray theory to calculate high-frequency radiation from earthquake sources having spatially variable rupture velocity and stress drop[J].Bull Seismo Soc Amer,1984,74(6):2 061-2 082.
    [31]Yao H,Shearer P,Gerstoft P.Compressive sensing of frequency dependent seismic radiation from subduction zone megathrust ruptures[J].Proc Nat Acad Sci,2013,110(12):4 512-4 517.
    [32]Scholz C H.Earthquakes and friction laws[J].Nature,1998,391:37-42.
    [33]Lay T,Kanamori H,Ammon C J,et al.Depthvarying rupture properties of subduction zone megathrust faults[J].J Geophys Res,2012,117:B04311;doi:10.1029/2011JB009133.
    [34]Baraniuk R G.Compressive sensing[J].IEEE Signal Process Mag,2007,24(4):118-121.
    [35]Boyd S P,Vandenberghe L.Convex Optimization[M].Cambridge,UK:Cambridge Univ Press,2004.
    [36]Grant M,Boyd S P.CVX:Matlab Software for Disciplined Convex Programming(version 1.21)[CP/OL][2013-10-12].http://cvxr.com/cvx.
    [37]Claerbout J.Image Estimation Example:Geophysical Sounding Image Construction[M/OL].Stanford,CA:Stanford University[2013-10-12].http://sepwww.stanford.edu/data/media/public/sep//prof/index.html.
    [38]Van Veen B D,Buckley K M.Beamforming:A versatile approach to spatial filtering[J].IEEE Trans Acoust SpeechSig Proc,1988,5(2):4-24.
    [39]Cox H,Zeskind R M,Owen M M.Robust adaptive beamforming[J].IEEE Trans Acoust SpeechSig Proc,1987,35(10):1 365-1 376.
    [40]Chu R S,Wei S J,Helmberger D,et al.Beginning of the great Mw=9.0Tohoku-Oki earthquake[J].Earth Planet Sci Lett,2011,301:277-283.
    [41]Heuret A,Lallemand S,Funiciello F,et al.Physical characteristics of subduction interface type seismogenic zones revisited[J].Geochem Geophys Geosyst,2011,12(1):Q01004;doi:10.1029/2010GC003230.
    [42]Stern R J.Subduction zones[J].Rev Geophys,2002,40(4):1012;doi:10.1029/2001RG000108.
    [43]Kanamori H,Kikuchi M.The 1992 Nicaragua earthquake:A low tsunami earthquake associated with subducted sediments[J].Nature,1993,361(6414):714-716.
    [44]Bilek S L,Lay T.Tsunami earthquakes possibly widespread manifestations of frictional conditional stability[J].Geophys Res Lett,2002,29(14):1673;doi:10.1029/2002GL015215.
    [45]Simons M,Minson S E,Sladen A,et al.The 2011magnitude 9.0 Tohoku-Oki earthquake:Mosaicking the megathrust from seconds to centuries[J].Science,2011,332(6036):1 421-1 425.
    [46]Koper K D,Hutko A R,Lay T,et al.Frequencydependent rupture process of the 11 March 2011 Mw9.0Tohuku earthquake:Comparison of short-period P wave backprojection images and broadband seismic rupture modes[J].Earth Planets Space,2011,63:599-602.
    [47]Yagi Y,Nakao A,Kasahara A.Smooth and rapid slip near the Japan Trench during the 2011 Tohoku-oki earthquake revealed by a hybrid back-projection method[J].Earth Planet Sci Lett,2012,355:94-101.
    [48]Marone C,Saffer D M.The Seismogenic Zone of Subduction Thrust Faults[M].Dixon T H,Moore J C.New York:Columbia Univ Press,2007:346-369.
    [49]Mitsui Y,Kato N,Fukahata Y,et al.Megaquake cycle at the Tohoku subduction zone with thermal fluid pressurization near the surface[J].Earth Planet Sci Lett,2012,325:21-26.
    [50]Rice J R.Heating and weakening of faults during earthquake slip[J].J Geophys Res,2006,111(B5):B05311;doi:10.1029/2005JB004006.
    [51]Wibberley C A J,Shimamoto T.Earthquake slip weakening and asperities explained by thermal pressurization[J].Nature,2005,436(7051):689-692.
    [52]Ma S,Hirakawa E T.Dynamic wedge failure reveals anomalous energy radiation of shallow subduction earthquakes[J].Earth Planet Sci Lett,2013,375:113-122.
    [53]Ma S.A self-consistent mechanism for slow dynamic deformation and tsunami generation for earthquakes in the shallow subduction zone[J].Geophys Res Lett,2012,39:L11310;doi:10.1029/2012GL051854.
    [54]Duan B.Dynamic rupture of the 2011Mw 9.0TohokuOki earthquake:Roles of a possible subducting seamount[J].J Geophys Res,2012,117:B05311;doi:10.1029/2011JB009124.
    [55]Yang H,Liu Y,Lin J.Effects of subducted seamounts on megathrust earthquake nucleation and rupture propagation[J].Geophys Res Lett,2012,39:L24302;doi:10.1029/2012GL053892.
    [56]Beroza G C,Ide S.Slow earthquakes and nonvolcanic tremor[J].Annu Rev Earth Planet Sci,2011,39:271-296.
    [57]Peng Z,Gomberg J.An integrative perspective of coupled seismic and aseismic slow slip phenomena[J].Nature Geosci,2010,3:599-607.
    [58]Loris I,Nolet G,Daubechies I,et al.Tomographic inversion using l1-norm regularization of wavelet coefficients[J].Geophys J Int,2007,170:359-370.
    [59]Rodriguez I V,Sacchi M,Gu Y.Continuous hypocenter and source mechanism inversion via a Green's function-based matching pursuit algorithm[J].Leading Edge,2010,29:334-337.
    [60]Rodriguez I V,Sacchi M,Gu Y.Simultaneous recovery of origin time,hypocentre location and seismic moment tensor using sparse representation theory[J].Geophys J Int,2012,188:1 188-1 202.
    [61]Herrmann F J,Hennenfent G.Non-parametric seismic data recovery with curvelet frames[J].Geophys J Int,2008,173:233-248.
    [62]Wang Y,Cao J,Yang C.Recovery of seismic wavefields based on compressive sensing by an l1-norm constrained trust region method and the piecewise random subsampling[J].Geophys J Int,2011,187(1):199-213.
    [63]Wang Y F,Yang C C,Cao J J.On Tikhonov regularization and compressive sensing for seismic signal processing[J].Math Models Methods Appl Sci,2012,22(2):1150008;doi:10.1142/S0218202511500084.
    [64]Evans E L,Meade B J.Geodetic imaging of coseismic slip and postseismic afterslip:Sparsity promoting methods applied to the great Tohoku earthquake[J].Geophys Res Lett,2012,39:L11314;doi:10.1029/2012GL051990.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心