蒙特卡罗模拟在区域地震滑坡灾害评价中应用
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
2004年10月23日,日本新泻中越地区发生史上最强地震之一,震级达到Mw6.6。这次地震诱发上千个规模大小不一、形式各样的滑坡,造成一定的灾害损失和人员伤亡。因此,为了有效地避免和减轻这方面的灾害,有必要有效地、科学地预测和评价地震诱发滑坡的空间发生规律。为此以一定的地区作为研究对象,提出了蒙特卡罗随机模拟和Newmark滑动体位移分析法在区域地震斜坡失稳概率分析中的应用。该法充分考虑到岩土参数和相关地震参数空间变异性,结合地理信息系统空间分析的优势,以网格模型为基础,分析该区斜坡滑动体位移分布规律,并以2cm为失稳临界值探讨网格斜坡破坏的概率。实例证明,所提出的模型有效地预测了滑坡发生的空间分布规律。
The 2004 Chuetsu earthquakes of Niigata(Japan) triggered numerous landslides,and the most widespread types of landslides were highly disrupted,relatively shallow slides and soil(debris) flows.To avoid and mitigate such seismic landslide hazard,this paper presents a method to evaluate the probability of slope failures using Newmark displacement on a pixel-by-pixel basis in a given area.The proposed method was able to integrate Newmark displacement modeling and Monte Carlo simulations with geographic information systems(GIS).In the modeling,an empirical attenuation relationship was utilized to calculate Arias intensity over this study area;and the variability of geotechnical parameters was taken into account to calculate coseismic displacement.After deriving the displacement from related inputs,the Monte Carlo simulations ran 1 000 times,and generated 1 000 displacement values for each grid cell;and then the displacement mean and standard deviation were calculated and its probabilistic distribution can be obtained.Finally,given 2 cm as a threshold value of displacement,estimated probabilities of displacement exceeding 2 cm were shown as a map of seismic landslide hazard.The resulting map was classified into four categories from very low to high level.
引文
[1]Plafker G,Ericksen GE,Fernández CJ.Geological aspects of the May 31,1970,Peru earthquake[J].Seismological Society of America Bulletin,1971,61:543-578.
    [2]Parise M,Jibson RW.A seismic landslide susceptibility rating of geologic units based on analysis of characteristics of landslides triggered by the 17 January,1994 Northridge,California earthquake[J].Engineering Geology,2000,58:251-270.
    [3]Hung JJ.Chi-Chi earthquake induced landslides in Taiwan[J].Earthquake Engineering and Engineering Seismology,2000,2(2):25-33.
    [4]Miles SB,Ho CL.Rigorous landslide hazard zonation using Newmark’s method and stochastic ground motion simulation[J].Soil Dynamics and Earthquake Engineering,1999,18:305-323.
    [5]Jibson RW,Harp EL,Michael JA.A method for producing digital probabilistic seismic landslide hazard maps[J].Engineering Geology,2000,58:271-289.
    [6]Carro M,De Amicis M,Luzi L,Marzorati S.The application of predictive modeling techniques to landslides induced by earthquake:the case study of the 26 September 1997 Umbria-Marche earthquake(Italy)[J].Engineering Geology,2000,69:139-159.
    [7]Lin ML,Tung CC.A GIS-based potential analysis of landslides induced by the Chi-Chi earthquake[J].Engineering Geology,2003,71:63-77.
    [8]Newmark NM.Effects of earthquakes on dams and embankments[J].Geotechnique,1965,15:139-160.
    [9]Luzi L,Pergalani F.A correlation between slope failures and accelerometric parameters:the 26 September 1997 earthquake(Umbria-Marche,Italy)[J].Soil Dynamics and Earthquake Engineering,2000,20:301-313.
    [10]Mankelow JM,Murphy W.Using GIS in the probabilistic assessment of earthquake triggered landslide hazards[J].Journal of Earthquake Engineering,1998,2(4):593-623.
    [11]Luzi L,Pergalani F,Terlien MTJ.Slope vulnerability to earthquakes as subregional scale,using probabilistic techniques and geographic information systems[J].Engineering Geology,2000,58:313-336.
    [12]Capolongo D,Refice A,Mankelow J.Evaluating earthquake-triggered landslide hazard at the basin scale through GIS in the Upper Sele River valley[J].Surveys in Geophysics,2002,23:595-625.
    [13]Del Gaudio V,Wasowski.Time probabilistic evaluation of seismically induced landslide hazard in Iripinia(Southern Italy)[J].Soil Dynamics and Earthquake Engineering,2004,24(12):915-928.
    [14]National Research Institute of Earth Science and Disaster Prevention.The 2004 mid Niigata earthquake.[y/md]:http://www.hinet.bosai.go.jp/topics/niigata041023,available online.
    [15]Research Group for Active Faults.Active faults in Japan:Sheet Maps and Inventories[M].Tokyo:University of Tokyo Press.1980,132-133.
    [16]Takeuchi K,Yanagisawa Y,Miyazaki J,Ozaki M.1:50,000 digital geological map of the Uonuma region Open-file Report,No.412[R].Niigata Prefecture[s.l]:Geological Survey of Japan,2004.
    [17]Geographical Survey Institute of Japan.Sheet map of the Chuetsu earthquake disaster in Niigata Prefecture,(scale 1:30,000)[R].2004.
    [18]Ambraseys NN,Menu JM.Earthquake-induced ground displacements[J].Earthquake Engineering and Structural Dynamics,1988,16:985-1006.
    [19]Crespellani T,Madiai C,Vannucchi G.Earthquake destructiveness potential factor and slope stability[J].Geotechnique,1998,48(3):411-419.
    [20]Arias A.A measure of earthquake intensity[A].Seismic design for nuclear power plants[C].Cambridge:Massachusetts Institute of Technology Press.1970,438-483.
    [21]Wilson RC,Keefer DK.Predicting areal limits of earthquake-induced landsliding.Earthquake hazards in the Los Angeles region–an earth-science perspective[C].[s.l]:[s.m],1985,317-345.
    [22]Nadim F,Einstein H,Roberds W.Probabilistic stability analysis for individual slopes in soil and rock[A].Landslide risk management[C].London:Taylor & Francis Group,2005,p.63-98.
    [23]Sassa K,Hiroshi F,Wang FW,Wang GH.Dynamic properties of earthquake-induced large-scale rapid landslides within past landslide masses[J].Landslides,2005,2(2):125-134.
    [24]Wieczorek GF,Wilson RC,Harp EL.Map showing slope stability during earthquakes in San Mateo County[R].California:Miscellaneous Investigation Maps I-1257-E,(scale 1:62,500),[s.l]:U.S.G.S,1985.
    [25]Jibson RW,Keefer DK.Analysis of the seismic origin of landslides:examples from the New Madrid seismic zone[J].Geological Society of America Bulletin,1993,105:521-536.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心