2013年四川芦山7.0级地震发震构造机理及青衣江上游流域地貌的响应
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
2013年4月20日发生在四川芦山的7.0级地震位于龙门山断裂带南段,文中通过分析震区青衣江上游流域地貌的构造响应与典型的震灾特征,研究此次地震的发震构造机理。对穿越龙门山断裂带南段的青衣江上游水系地貌特征及流域盆地面积-高程积分的分析结果表明:该地区流域地貌发育对龙门山断裂带的新活动具有明显的反馈作用。在芦山地震中,遭受严重破坏的建筑物呈条带状分布,并产生大量次生地表张性地裂缝、串珠状砂土液化等地表破坏现象,其展布方向均与震区中的主断裂和背斜隆起相平行。余震分布表明,芦山地震与本区的双石—大川断裂、新开店断裂和大邑断裂的新活动有关。龙门山断裂带为典型的逆冲推覆构造,具有前展式发育特征,芦山地震的发震构造就具有该特征。综合龙门山南段的地貌响应过程、芦山地震的地表破坏及余震分布特征,认为芦山7.0级地震应为龙门山断裂带持续向SE逆冲扩展、地壳挤压缩短的产物。
On April 20,2013,in Sichuan Province,the Lushan MS7.0earthquake occurred on the southern segment of the Longmenshan fault belt.Through the analysis of the upstream geomorphology and the typical earthquake destruction characteristics,we probed into the seismogenic tectonic mechanism of the Lushan MS7.0earthquake in this paper.The analysis of the geomorphic features of the upstream drainages and hypsometric interval(HI value)of the drainage basins showed that the landscape development has obvious feedback effect on the neotectonic activities of the Longmenshan fault belt.The buildings,destroyed seriously in the earthquake,distributed as bands.The earthquake produced a large number of secondary surface tension cracks and a series of beaded liquefaction.The distribution of the surface destruction phenomenon was in parallel with the main faults and anticline.The aftershock distribution showed that the Lushan earthquake was closely related with the new activities of the Shuangshi-Dachuan fault,Xinkaidian fault and Dayi fault.The Longmenshan fault zone is a typical thrust-nappe structure.And the seismogenic structure of the Lushan earthquake has the same characteristics.Upstreams of the Qingyijiang river cross the southern segment of the Longmenshan fault belt.Combining the geomorphological response process of the southern segment of the Longmenshan,the characteristics of the surface damages of the Lushan earthquake and the aftershock distribution,the Lushan earthquake was ascribed to the result of the ceaselessly propagating of the Longmenshan thrust fault belt in SE direction and the compression and shortening of the crust.
引文
[1]Burchfiel G P,Chen Z,Liu Y,et al.Tectonics of the Longmen Shan and adjacent regions,central China[J].International Geology Review,1995,37:661-735.
    [2]陶晓风.龙门山双石推覆构造的形成机制探讨[J].成都理工学院学报,1995,22(2):27-30.
    [3]李勇,黄润秋,周荣军,等.汶川MS8.0级地震的水系响应[J].四川大学学报:工程科学版,2010,42(5):20-32.
    [4]Burchfiel G P,Royden L H,Hilst R D,et al.A geological and geophysical context for the Wenchuan earthquake of 12May 2008,People’s Republic of China[J].GSA,2008,18:4-11
    [5]徐锡伟,陈桂华,于贵华,等.芦山地震发震构造及其与汶川地震关系讨论[J].地学前缘,2013,20:1-10.
    [6]张培震,闻学泽,徐锡伟,等.2008年汶川8.0级特大地震孕育和发生的多单元组合模式[J].科学通报,2009,54(7):944-953.
    [7]徐锡伟,闻学泽,叶建青,等.汶川MS8.0地震地表破裂带及其发震构造[J].地震地质,2008,30(3):597-629.
    [8]李勇,黎兵,Stenffen D,等.青藏高原东缘晚新生代成都盆地物源分析与水系演化[J].沉积学报,2006,24(3):309-320.
    [9]Schumm S A,Dumont J F,Holbrook J M.Active Tectonics and Alluvial[M].Cambridge:Cambridge University Press,2000:3-20.
    [10]Hetzel R,Tao M X,Niedermann S,et al.Implications of the fault scaling law for the growth of topography:Mountain ranges in the broken foreland of Northeast Tibet[J].Terra Nova,2004,16:157-162.
    [11]贾营营,付碧宏,王岩,等.青藏高原东缘龙门山断裂带晚新生代构造地貌生长及水系响应[J].第四纪研究,2010,30(4):825-836.
    [12]Gupta S.Himalayan drainage patterns and the origin of fluvial megafans in the Ganges foreland basin[J].Geology,1997,25:11-14.
    [13]Burbank D W,Pinter N.Landscape evolution:The interactions of tectonics and surface processes[J].Basin Research,1999,11:1-6.
    [14]Delcaillau B,Deffontains B,Floissac L,et al.Morphotectonic evidence from lateral propagation of an active frontal fold:Pakuashan anticline,foothills of Taiwan[J].Geomorphology,1999,24:263-290.
    [15]Keller E A,Gurrola L,Tierney T E.Geomorphic criteria to determine direction of lateral propagation of reverse faulting and folding[J].Geology,1999,27:515-518.
    [16]Kirby E,Whipple K.Quantifying differential rock-uplift rates via stream profile analysis[J].Geology,2001,29:415-418.
    [17]Strahler A N.Hypsometric(Area-Altitude)analysis of erosional topography[J].Bulletin of the Geological Society of America,1952,63:1117-1142.
    [18]陈彦杰.台湾山脉地形演育的测高曲线与高程频率分布形态[J].地理学报(台湾),2008,54:79-94.
    [19]Pérez-Pea J V,Azaón,J M,Azor A,et al.CalHypso:An ArcGIS extension to calculate hypsometric curves and their statistical moments:Applications to drainage basin analysis in SE Spain[J].Computer&Geosciences,2009,35(6):1214-1223.
    [20]Cheng K Y,Hung J H,Chang H C,et al.Scale independence of basin hypsometry and steady state topography[J].Geomorphology,2012,171/172:1-11.
    [21]Ohmori H.Changes in the hypsometric curve through mountain building resulting from concurrent tectonics and denudation[J].Geomorphology,1993,8:263-277.
    [22]Lifton N A,Chase C G.Tectonic,climatic and lithologic influences on landscape fractal dimension and hypsometry:Implications for landscape evolution in the San Gabriel Mountains,California[J].Geomorphology,1992,5:77-114.
    [23]Hurtrez J E,Sol C,Lucazeau F.Effect of drainage area on hypsometry from an analysis of small-scale drainage basins in the Siwalik Hills(central Nepal)[J].Earth Surface Processes and Landforms,1999,328:687-694.
    [24]杨晓平,蒋溥,宋方敏,等.龙门山断裂带南段断错晚更新世以来地层的证据[J].地震地质,1999,21(4):341-345.
    [25]张岳桥,李海龙.龙门山断裂带西南段晚第四纪活动性调查与分析[J].第四纪研究,2010,30(4):699-710.
    [26]Pike R J,Wilson S E.Elevation-relief ratio,hypsometric integral,and geomorphic area-altitude analysis[J].Geological Society of America Bulletin,1971,82:1079-1084.
    [27]Kirby E,Whipple K X,Tang W Q,et al.Distribution of active rock uplift along the eastern margin of the Tibetan Plateau:Inferences from bedrock channel longitudinal profiles[J].Journal of Geophysical Research,2003,108(B4):2217.doi:10.1029/2001JB000861.
    [28]陈杰,李佑国,崔志强,等.成都盆地南缘与新构造运动有关的河道演变及其对沉积作用影响初步探讨[J].资源调查与环境,2008,29(1):18-23.
    [29]王刚,陶晓风,伊海生,等.四川盆地西南缘雅安—名山地区青衣江古河道的变迁及蒙顶山背斜的隆起[J].第四纪研究,2010,30(4):779-790.
    [30]王卫民,郝金来,姚振兴.2013年4月20日四川芦山地震震源破裂过程反演初步结果[J].地球物理学报,2013,56(4):1412-1417.
    [31]曾祥方,罗艳,韩立波,等.2013年4月20日四川芦山MS7.0地震:一个高角度逆冲地震[J].地球物理学报,2013,56(4):1418-1424.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心