新疆富蕴地震断裂带植被恢复对土壤古菌群落的影响
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
选取新疆富蕴地震断裂带8种次生植物根际土壤,以同土层裸地为对照,测量土壤化学性质,利用末端限制性片段长度多态性技术研究塌陷区次生植物对土壤古菌群落的影响。结果表明,多数植物根际土壤养分显著(P<0.05)高于对照,其主要古菌类群为泉古菌门(Crenarchaeota)和广古菌门(Euryarchaeota),群落间多样性差异大,相似性低。不同植物根际土壤古菌的优势类群数量差异较大,鼠掌老鹳草高达18种,西北绢蒿少为2种。典范对应分析表明,土壤有机质含量对古菌优势类群分布影响最大(HhaⅠ酶切:r=0.94;RsaⅠ酶切:r=0.74),速效磷含量与古菌群落各多样性指数呈显著正相关(P<0.05),总氮含量与均匀度指数E呈显著正相关(P<0.05)。新疆地震断裂带植被的恢复可影响根际土壤古菌群落的分布、组成和结构,其原因与植物根际土壤化学性质有关,同时在改善土壤肥力方面也有显著效果。
Strong earthquake could cause a variety of secondary geological disasters,and severely damage ecological environment.After earthquake,the vulnerable and sensitive ecosystems are going through a series of vegetation restoration and soil succession.Of this,vegetation recovery was regarded as the core of reconstruction of ecological restoration.However,the current research mainly focused on the investigation,recovery and reconstruction of the ecosystem damage from a macro perspective.Research in regard to the relationship between vegetation and soil microbial was rarely reported.Fuyun earthquake fault zone is located in Fuyun county of Altay in Xinjiang,which was caused by a serious earthquake of 8 scales on August 11,1931 and formed a 176 km long rift.It was one of the rare earthquake fault zones in the world.The aim of this study therefore was to investigate the effect of secondary plants on soil archaeal communities in the secondary barren of Fuyun seismic fault zone in Xinjiang.In a 300×30m range(collapse region was long and narrow),8 different plants were selected as dominant plant species after investigation.They were Salix vistita,Salix rectijulis,Eremopyrum orientale,Seriphidium nitrosum,Geranium sibiricum,Spiraea media,Galium verum and Rosa spinosissima.The rhizosphere soils collected from the 8 different plants were studied by testing soil chemical properties(mainly include soil organic matter,pH,total nitrogen,available nitrogen,available phosphorus and available potassium) and soil archaeal community structures were surveyed by employing Terminal restriction fragment length polymorphism(T-RFLP).Unplanted soil in the same depth served as control.The results showed that the soil in study site was alkaline(pH=8.28—8.51).The soil nutrient contents in Eremopyrum orientale′s rhizosphere were generally higher compared with other plant.There were great differences in soil nutrient content among samples,but the overall trend was the nutrients in most plants′ rhizosphere soil was significantly(P<0.05) higher than control.Archaeal 16S rDNA fragments could be amplified only in the rhizosphere soils.The diversity indices(include richness,Shannon-Weiner index,Simpson index and evenness) were vary with different enzymes digestion.The similarities of archaeal communities calculated by the Sorensen formula were low among different rhizosphere soils and most numerous were in Geranium sibiricum′s rhizosphere with 18 species and minimum were in Seriphidium nitrosum with 2 species.Crenarchaeota and Euryarchaeota were the main possible archaeal groups identified by MiCA(Microbial Community Analysis) online analysis.Canonical correspondence analysis(CCA) showed that soil organic matter,available phosphorus,total nitrogen and pH can significantly affect the archaeal communities.Especially soil organic matter had the greatest impact on the distribution of dominant archaeal groups(HhaⅠ digestion: r=0.94;RsaⅠ digestion: r=0.74).Correlation analysis showed that soil available phosphorus content was positively correlated with all diversity indices of archaeal communities(P<0.05),and total nitrogen content showed a significant positive correlation(P<0.05) to the evenness index in HhaⅠdigestion.These results indicated that recovery of vegetation not only could affect archaeal communities′ composition,structure and distribution in earthquake fault zone of Xinjiang,but also could improve the soil fertility and possible reasons were related to rhizosphere′s chemical properties.
引文
[1]Liu G Q,Jiao X.Ecological issues caused by Wenchuan earthquake and countermeasures.Soil and Water Conservation in China,2008,(11):11-13.
    [2]Pan J X,Zhang Y.Selection and application of plants in ecosystems reconstruction after the earthquake.Journal of Institute of Disaster-Prevention Science and Technology,2009,11(3):9-13.
    [3]Shi J B,Ding G Y.Preface//Seismological Bureau of Xinjiang Uygur Autonomous Region eds.The Fuyun Seismic Fault Zone.Beijing:Seismological Press,1985:1-5.
    [4]Peng S L.Restoration ecology and vegetation reconstruction.Ecologic Science,1996,15(2):26-31.
    [5]Artz R R E,Chapman S J,Siegenthaler A,Mitchell E A D E,Buttler A,Bortoluzzi E,Gilbert D,Ylipetays M,Vasander H,Francez A J.Functional microbial diversity in regenerating cutover peatlands responds to vegetation succession.Journal of Applied Ecology,2008,45(6):1799-1809.
    [6]He X Y,Wang K L,Zhang W,Chen Z H,Zhu Y G,Chen H S.Positive correlation between soil bacterial metabolic and plant species diversity and bacterial and fungal diversity in a vegetation succession on Karst.Plant and Soil,2008,307(1/2):123-134.
    [7]Zhang S Y,Yu M Q,Zhu L,Qin X L.A study on microbial biomass C,N characteristics in different rehabilitating forests on degraded red soil.Acta Agriculturae Universitatis Jiangxiensis:Natural Sciences Edition,2010,32(1):101-107.
    [8]Clay K,Holah J.Fungal endophyte symbiosis and plant diversity in successional fields.Science,1999,285(5434):1742-1744.
    [9]Yang H L,Liu D M,Sun H.Ecological impacts of earthquake on local ecosystem and its restoration.Sichuan Environment,2009,28(4):97-101.
    [10]He J Z,Shen J P,Zhang L M.Advance in the research of soil non-thermophilic Crenarchaeota.Acta Ecologica Sinica,2009,29(9):5047-5055.
    [11]He S H.1716—1980seismic data of Xinjiang//Seismological Bureau of Xinjiang Uygur Autonomous Region,eds.Compilation of Earthquake Materials of Xinjiang Uygur Autonomous Region.Beijing:Seismological Press,1985:5-132.
    [12]Nicol G W,Glover L A,Prosser J I.Spatial analysis of archaeal community structure in grassland soil.Applied and Environmental Microbiology,2003,69(12):7420-7429.
    [13]Xi F,Fu L Y,Wang G Z,Zheng T L.A simple method for removing humic acids from marine sediment samples prior to DNA extraction.Chinese High Technology Letters,2006,16(5):539-544.
    [14]Zhou J,Bruns M A,Tiedje J M.DNA recovery from soils of diverse composition.Applied and Environmental Microbiology,1996,62(2):316-322.
    [15]Zhang R F,Cao H,Cui Z L,Li S P,Fan B.Extraction and purification of soil microbial total DNA.Acta Microbiologica Sinica,2003,43(2):276-282.
    [16]Zhang R,Thiyagarajan V,Qian PY.Evaluation of terminal-restriction fragment length polymorphism analysis in contrasting marine environments.FEMS Microbiology Ecology,2008,65(1):169-178.
    [17]Li H.Progress of T-RFLP analysis for microbial community.Journal of Anhui Normal University:Natural Science,2006,29(6):582-585.
    [18]Eiler A,Bertilsson S.Composition of freshwater bacterial communities associated with cyanobacterial blooms in four Swedish lakes.Environmental Microbiology,2004,6(12):1228-1243.
    [19]Schütte U M E,Abdo Z,Bent S J,Shyu C,Williams C J,Pierson J D,Forney L J.Advances in the use of terminal restriction fragment length polymorphism(T-RFLP)analysis of16S rRNA genes to characterize microbial communities.Applied Microbiology and Biotechnology,2008,80(3):365-380.
    [20]Luna G M,Stumm K,Pusceddu A,Danovaro R.Archaeal diversity in deep-sea sediments estimated by means of different terminal-restriction fragment length polymorphisms(T-RFLP)protocols.Current Microbiology,2009,59(3):356-361.
    [21]Székely A J,Sipos R,Berta B,Vajna B,HajdúC,Márialigeti K.DGGE and T-RFLP Analysis of Bacterial Succession during Mushroom Compost Production and Sequence-aided T-RFLP Profile of Mature Compost.Microbial Ecology,2009,57(3):522"533.
    [22]Yuan S Q,Xue Y F,Gao P,Wang W D,Ma Y H.Microbial diversity in Shengli petroleum reservoirs analyzed by T-RFLP.Acta Microbiologica Sinica,2007,47(2):290-294.
    [23]Jackson C R,Liew K C,Yule C M.Structural and functional changes with depth in microbial communities in a tropical malaysian peat swamp forest.Microbial Ecology,2009,57(3):402-412.
    [24]Huang C M,Gong Z T.Progress in quantitative study on soil genesis and development.Soils,2000,32(3):145-150,166-166.
    [25]Zhang W,Hu Y G,Huang G H,Gao H W.Soil microbial diversity of artificial peashrub plantation on North Loess Plateau of China.Acta Microbiologica Sinica,2007,47(5):751-756.
    [26]Chen X P,Zhu Y G,Xia Y,Shen J P,He J Z.Ammonia-oxidizing archaea:important players in paddy rhizosphere soil.Environmental Microbiology,2008,10(8):1978-1987.
    [27]Lin A M,Lin S J.Tree damage and surface displacement:the1931M8.0Fuyun earthquake.The Journal of Geology,1998,106(6):751-757.
    [28]Tscherkoa D,Hammesfahr U,Zeltner G,Kandeler E,Bcker R.Plant succession and rhizosphere microbial communities in a recently deglaciated alpine terrain.Basic and Applied Ecology,2005,6(4):367-383.
    [29]Wu L Q,Ma K,Li Q,Ke X B,Lu Y H.Composition of archaeal community in a paddy field as affected by rice cultivar and N fertilizer.Microbial Ecology,2009,58(4):819-826.
    [30]Miao G Y,Jia Z H,Yang Z P,Zhang Y Q.Quantity difference of rhizosphere microbe of different crops.Journal of Shanxi Agricultural University:Natural Science Edition,2004,24(2):93-96.
    [31]Haichar F Z,Marol C,Berge O,Rangel-Castro J I,Prosser J I,Balesdent J,Heulin T,Achouak W.Plant host habitat and root exudates shape soil bacterial community structure.The ISME Journal,2008,2(12):1221-1230.
    [32]Ackerly D.Functional strategies of chaparral shrubs in relation to seasonal water deficit and disturbance.Ecological Monographs,2004,74(1):25-44.
    [33]Li Q K,Ma K P.Advances in plant succession ecophysiology.Acta Phytoecologica Sinica,2002,26(Z):9-19.
    [34]Nicol G W,Glover L A,Prosser J I.Spatial analysis of archaeal community structure in grassland soil.Applied and Environmental Microbiology,2003,69(12):7420-7429.
    [35]Simon H M,Dodsworth J A,Goodman R M.Crenarchaeota colonize terrestrial plant roots.Environmental Microbiology,2000,2(5):495-505.
    [36]Roesch L F W,Fulthorpe R R,Riva A,Casella G,Hadwin A K M,Kent A D,Daroub S H,Camargo F A O,Farmerie W G,Triplett E W.Pyrosequencing enumerates and contrasts soil microbial diversity.Multidisciplinary Journal of Microbial Ecology,2007,1(4):283-290.
    [37]Ji Z J,Weng J H,Lin X G,Conrad R.Microbial ecology of archaeal ammonia oxidation—A review.Acta Microbiologica Sinica,2010,50(4):431-437.
    [38]Cao F Q,Liu Z H,Liu M,Cui J F.Research progress on the forest litterfall and its decomposition process.Guangxi Agricultural Sciences,2010,41(7):693-697.
    [39]Zhou Z B,Li P J.Ecological distribution of soil microorganism in artificial greenbelt in hinterland of Takilimakan Desert and their relations with soil factor.Chinese Journal of Applied Ecology,2003,14(8):1246-1250.
    [40]Zhang Y N,Liang Y T,Li G H.Studies on relationship between carbon metabolism of soil microbial community and soil physicochemical factors.China Environmental Science,2010,30(12):1639-1644.
    [41]Nicol G W,Tscherko D,Embley T M,ProsserJ I.Primary succession of soil Crenarchaeota across a receding glacier foreland.Environmental Microbiology,2005,7(3):337-347.
    [42]Zhao P.Advances in plant ecophysiological studies on re-vegetation of degraded ecosystems.Chinese Journal of Applied Ecology,2003,14(11):2031-2036.
    [1]刘广全,焦醒.汶川地震引发的生态问题及对策.中国水土保持,2008,(11):11-13.
    [2]潘静娴,张莹.地震灾后生态系统重建中的植被恢复初探.防灾科技学院学报,2009,11(3):9-13.
    [3]石鉴帮,丁国瑜.前言//新疆维吾尔自治区地震局.富蕴地震断裂带.北京:地震出版社,1985:1-5.
    [4]彭少麟.恢复生态学与植被重建.生态科学,1996,15(2):26-31.
    [7]张水印,余明泉,朱玲,秦晓蕾.退化红壤区不同重建模式森林土壤微生物碳氮特征研究.江西农业大学学报,2010,32(1):101-107.
    [9]杨红露,刘冬梅,孙辉.地震的生态破坏及其恢复重建研究进展.四川环境,2009,28(4):97-101.
    [10]贺纪正,沈菊培,张丽梅.土壤中温泉古菌研究进展.生态学报,2009,29(9):5047-5055.
    [11]新疆维吾尔自治区地震局.1716—1980年新疆地区地震资料//新疆维吾尔自治区地震局.新疆维吾尔自治区地震资料汇编.北京:地震出版社,1985:5-132.
    [13]席峰,傅莲英,王桂忠,郑天凌.海洋沉积物DNA提取前的简易脱腐方法研究.高技术通讯,2006,16(5):539-544.
    [15]张瑞福,曹慧,崔中利,李顺鹏,樊奔.土壤微生物总DNA的提取和纯化.微生物学报,2003,43(2):276-282.
    [17]李红.末端限制性酶切片段长度多态性分析技术进展.安徽师范大学学报:自然科学版,2006,29(6):582-585.
    [22]袁三青,薛燕芬,高鹏,汪卫东,马延和.T-RFLP技术分析油藏微生物多样性.微生物学报,2007,47(2):290-294.
    [24]黄成敏,龚子同.土壤发生和发育过程定量研究进展.土壤,2000,32(3):145-150,166-166.
    [25]张薇,胡跃高,黄国和,高洪文.西北黄土高原柠条种植区土壤微生物多样性分析.微生物学报,2007,47(5):751-756.
    [30]苗果园,贾志红,杨珍平,张永清.不同作物根际微生物差异的研究.山西农业大学学报:自然科学版,2004,24(2):93-96.
    [33]李庆康,马克平.植物群落演替过程中植物生理生态学特性及其主要环境因子的变化.植物生态学报,2002,26(增刊):9-19.
    [38]曹富强,刘朝晖,刘敏,崔俊峰.森林凋落物及其分解过程的研究进展.广西农业科学,2010,41(7):693-697.
    [39]周智彬,李培军.塔克拉玛干沙漠腹地人工绿地土壤中微生物的生态分布及其与土壤因子间的关系.应用生态学报,2003,14(8):1246-1250.
    [42]赵平.退化生态系统植被恢复的生理生态学研究进展.应用生态学报,2003,14(11):2031-2036.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心