沉管节段接头剪力键结构形式合理性
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
为了优化剪力键结构,改善剪力键受力,采用三维数值模拟软件对沉管节段接头剪力键的受力特性进行了分析,并将结果与大比例尺模型试验剪力键受力特征及破坏状态进行比较,得出了剪力键端角处局部压应力较大,剪力键与衬砌衔接处局部拉应力较大的受力特点。针对上述受力特点,提出了在剪力键与节段衔接处增设受拉钢筋,对剪力键的结构形式进行了3种改变的建议,并将改变后的剪力键与工程原型进行局部三维数值模拟对比研究。研究结果表明:相比工程原型,增大剪力键端头倾角有利于剪力键受力,但效果并不显著;端角处采用圆角设计,能够明显改善剪力键受力,其端角处的局部应力较工程原型降低了27.2%;在端角处采用倒角设计,剪力键局部应力集中最显著,不利于剪力键受力,应避免采用。
In order to optimize the structure of shear keys and improve their stress performance,the 3-D numerical simulation software was adopted.In addition,the mechanical characteristics of segmental joint shear keys on immersed tunnel were analysed and these results were compared to the mechanical characteristics and failure conditions in large scale model tests.The result that local compression stress on shear key tips and local tension stress on the link part between shear keys and segments were large was obtained. Furthermore, based on these mechanical characteristics,the advice that setting up tensile reinforcement on the link part was put forward.Besides,three structure changes on shear key tips were proposed and they were studied by local3-D numerical simulations,whose results were compared to those of engineering prototype.The results show that,comparing to the prototype,increasing horizontal inclination of shear keys has benefits to the stress distribution of shear keys,but its effect is not so notable.The circular angle design can improve the stress performance of shear keys significantly,and its local stress can decrease 27.2%than that of engineering prototype.However,the concentration of chamfer angledesign has no advantage to the stress performance of shear keys,which should be avoided.2tabs,20 figs,16refs.
引文
[1]Lunniss R,Baber J.Immersed tunnels[M].Boca Raton:CRC Press,2013.
    [2]Saveur J,Grantz W.Christian Ingerslev.Chapter 3structural design of immersed tunnels[J].Tunnelling and Underground Space Technology,1997,12(2):93-109.
    [3]Nestor R,Walter G.Chapter 9catalogue of immersed tunnels[J].Tunnelling and Underground Space Technology,1997,12(2):163-316.
    [4]Jr H,EI-Esnawi H,Moses F.Shear key performance in multi-beam box girder bridges[J].Journal of Performance of Construction Facilities.1995,9(2):271-285.
    [5]王春生,黄本才,俞欣,等.钢桥塔的塔形力学特性分析[J].长安大学学报:自然科学版,2007,27(4):46-51.WANG Chun-sheng,HUANG Ben-cai,YU Xin,et al.Mechanics behavior analysis on steel pylons of bridge structures[J].Journal of Changan University:Natural Science Edition,2007,27(4):46-51.(in Chinese)
    [6]Goel R,Chopra A.Role of shear keys in seismic behavior of bridges crossing fault-rupture zones[J].Journal of Bridge Engneering,2008(13):398-408.
    [7]雷自学,晏兴威,董三升.混凝土收缩徐变效应对曲线钢-混凝土箱形结合梁桥的影响[J].长安大学学报:自然科学版,2008,28(5):77-80.LEI Zi-xue,YAN Xing-wei,DONG San-sheng.Effect of shrinkage and creep of concrete on curved steelconcrete composite box girder bridges[J].Journal of Changan University:Natural Science Edition,2008,28(5):77-80.(in Chinese)
    [8]林鸣,史福生,表莲.日本沉管隧道最终接头施工新工法[J].中国港湾建设,2012(4):1-4.LIN Ming,SHI Fu-sheng,BIAO Lian.New technology for construction of final joints of immersed tube tunnels in Japan[J].China Harbour Engineering,2012(4):1-4.(in Chinese)
    [9]姜杰.沉管接头钢剪切键的试验与设计[J].现代隧道技术,2001,38(4):40-43.JIANG Jie.Test and design of steel shear key of immersed tunnel[J].Modern Tunneling Technology,2001,38(4):40-43.(in Chinese)
    [10]唐英,管敏鑫,万晓燕.沉管隧道接头的理论分析及研究[J].中国铁道科学,2002,23(1):67-71.TANG Ying,GUAN Min-xin,WAN Xiao-yan.The analysis and study of rail joints in immersed tunnel[J].China Railway Science,2002,23(1):67-71.(in Chinese)
    [11]谢立广,周晓军,杨群.水中悬浮隧道管段接头的力学特性分析[J].现代隧道技术,2008,45(4):32-38.XIE Li-guang,ZHOU Xiao-jun,YANG Qun.Analysis on mechanical behavior of tube joints of a submerged floating tunnel[J].Modern Tunneling Technology,2008,45(4):32-38.(in Chinese)
    [12]刘千伟.常洪沉管隧道接头施工技术[J].岩石力学与工程学报,2003,22(增1):2478-2483.LIU Qian-wei.Construction technique of joints for Changhong immersed tube tunnel[J].Chinese Journal of Rock Mechanics and Engineering.2003,22(S1):2478-2483.(in Chinese)
    [13]Hans C,Jin W.Analysis of the tunnel immersion for the busan-geoje fixed link project through scale model tests and computer simulations[C]//ASME.Proceedings of the ASME 28th International Conference on Ocean,Offshore and Arctic Engineering OMAE2009.Honolulu:ASME,2009:1-10.
    [14]刘建飞,贺维国,曾进群.静力作用下沉管隧道三维数值模拟[J].现代隧道技术,2007,44(1):5-9.LIU Jian-fei,HE Wei-guo,ZENG Jin-qun.Three-dimensional simulation for the static behavior of immersed tube tunnels[J].Modern Tunneling Technology,2007,44(1):5-9.(in Chinese)
    [15]Ding J,Jin X,Guo Y,et al.Numerical simulation for large-scale seismic response analysis of immersed tunnel[J].Engineering Structures,2006,28(2):1367-1377.
    [16]丁峻宏,金先龙,郭毅之,等.沉管隧道地震响应的三维非线性数值模拟方法及应用[J].振动与冲击.2005,24(5):18-22.DING Jun-hong,JIN Xian-long,GUO Yi-zhi,et al.Three-dimensional nonlinear numerical simulation methods of the immersed tube tunnel earthquake response and its applications[J].Journal of Vibration and Shock,2005,24(5):18-22.(in Chinese)

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心