列车振动下隧道与土体响应的双尺度耦合模拟
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
对于土体离散–连续耦合问题,给出通过强化边界耦合力在离散和连续模型中的相容性,将提取边界耦合节点力转化为寻优问题的新方法,并用Lagrange乘子法求解。将此方法嵌入离散–连续双尺度耦合动力模型,模拟列车振动下隧道与土体的动力响应。用相互作用的离散颗粒模拟隧道附近土体,远离隧道的土体用连续模型模拟,编写结构的动力有限元程序嵌入离散元软件中来模拟隧道。通过离散元软件PFC2D和有限差分软件FLAC2D的交互运算实现耦合过程。在耦合边界通过交换速度和力保证耦合模型的连续性,通过自振柱模拟使离散区域土体的宏观性质与连续土体模型一致。通过比较耦合方法与只用连续模型模拟得到的结果,说明提出方法的有效性。双尺度耦合模型可以有效描述动力响应中隧道附近土体的细观特性,并极大降低离散元的模拟规模,减少模拟时间,适用于振动在半无限体中传播时重点考察区域土体的细观分析。
A new method for picking up coupled nodal forces in coupled micro-macro model is presented.By enforcing the compatibility of coupling boundary nodal forces obtained from discrete and continuum models,picking up coupled nodal forces is converted to an optimization problem solved by Lagrange multiplier method.Based on two-scale coupled approach,tunnel and its surrounding soil under periodic train loading are simulated.Particle flow code in 2 dimensions(PFC2D),which is based on discrete element method,is used to simulate sands near the tunnel,while the domain containing particles away from the tunnel is simulated as continuum media by FLAC2D.The motion of the tunnel is governed by a self-edited dynamic finite element program which is added to PFC.Coupling is achieved by interchanging data between the two softwares during each time step.The continuity between the discrete and continuum domains is fulfilled by interchanging velocities and forces;and a free-vibration column simulation is applied to obtain particle assembly's macroproperties.Through comparison between results from coupled model and continuum model,the effectiveness of the presented method is demonstrated.It is shown that,the coupled method can well depict the concerned zone around the tunnel on the micro-scale while efficiently reduce particle numbers,and is suitable for micro-scale dynamic analysis of concerned zone in a semi-infinite body.
引文
[1]KARIM A M.Three-dimensional discrete element modeling of tunneling in sand[Ph.D.Thesis][D].Edmonton:University of Alberta,2007.
    [2]CAI M,KAISER P K,MORIOKA H,et al.FLAC/PFC coupled numerical simulation of AE in large-scale underground excavations[J].International Journal of Rock Mechanics and Mining Sciences,2007,44(3):550–564.
    [3]JIN W F,ZHOU J.A coupled micro-macro method for pile penetration analysis[C]//Proceedings of the 2010 Geo-Shanghai International Conference.Shanghai:Geotechnical Special Publication,2010:234–239.
    [4]周健,金炜枫.基于耦合方法的挡土墙地震响应的数值模拟[J].岩土力学,2010,31(12):3 949–3 957.(ZHOU Jian,JIN Weifeng.Coupled approach based simulation of a retaining wall under seismic excitation[J].Rock and Soil Mechanics,2010,31(12):3 949–3 957.(in Chinese))
    [5]CUNDALL P A.PFC user manual[R].Minneapolis:Itasca Consulting Group Inc.,2004.
    [6]周健,史旦达,贾敏才,等.循环加荷条件下饱和砂土液化细观数值模拟[J].水利学报,2007,38(6):697–703.(ZHOU Jian,SHI Danda,JIA Mincai,et al.Micro-mechanical simulation of liquefaction behavior of saturated sand under cyclic loading[J].Journal of Hydraulic Engineering,2007,38(6):697–703.(in Chinese))
    [7]周健,邓益兵,贾敏才,等.基于颗粒单元接触的二维离散–连续耦合分析方法[J].岩土工程学报,2010,32(10):1 479–1 484.(ZHOU Jian,DENG Yibing,JIA Mincai,et al.Coupling method of two-dimensional discontinuum-continuum based on contact between particle and element[J].Chinese Journal of Geotechnical Engineering,2010,32(10):1 479–1 484.(in Chinese))
    [8]姜朴.现代土工测量技术[M].北京:中国水利水电出版社,1996:69–95.(JIANG Pu.Modern measure technique for soil engineering[M].Beijing:China Water Power Press,1996:69–95.(in Chinese))
    [9]LI X S.Laboratory determination of shear modulus and damping of soils using a microcomputer based instrumentation system[M.S.Thesis][D].Davis:University of California at Davis,1982.
    [10]顾尧章,李相崧,沈智刚.土动力学中的自振柱试验[J].土木工程学报,1984,17(2):39–47.(GU Yaozhang,LI Xiangsong,SHEN C K.A free-vibrating column test in soil dynamics[J].China Civil Engineering Journal,1984,17(2):39–47.(in Chinese))
    [11]BRAJA M D.土动力学原理[M].吴世明,顾尧章译.杭州:浙江大学出版社,1984:22–41.(BRAJA M D.Principles of soil dynamics[M].Translated by WU Shiming,GU Yaozhang.Hangzhou:Zhejiang University Press,1984:22–41.(in Chinese))
    [12]DEGRANDE G,CLOUTEAU D,OTHMAN R,et al.A numerical model for ground-borne vibrations from underground railway traffic based on a periodic finite element-boundary element formulation[J].Journal of Sound and Vibration,2006,293(4):645–666.
    [13]皱泾湘.结构动力学[M].哈尔滨:哈尔滨工业大学出版社,1996:110–112.(ZHOU Jingxiang.Structural dynamics[M].Harbin:Harbin Institute of Technology Press,1996:110–112.(in Chinese))
    [14]张传义,包革军,张彪.工科数学分析[M].北京:科学出版社,2001:144–151.(ZHANG Chuanyi,BAO Gejun,ZHANG Biao.Mathematical analysis for engineering[M].Beijing:Science Press,2001:144–151.(in Chinese))
    [15]BELYTSCHKO T,LIU W K,MORAN B.Nonlinear finite element for continua and structures[M].New York:Wiley,2000:19–22.
    [16]徐稼轩,郑铁生.结构动力分析的数值方法[M].西安:西安交通大学出版社,1993:215–220.(XU Jiaxuan,ZHENG Tiesheng.Numerical methods of structural dynamics[M].Xi′an:Xi′an Jiaotong University Press,1993:215–220.(in Chinese))
    [17]YOKOYAMA T.Vibration of a hanging Timoshenko beam under gravity[J].Journal of Sound and Vibration,1990,151(2):245–258.
    [18]ZIENKIEWICZ O C,TAYOR R L.Finite element method for solid and structural mechanics[M].6th ed.Butterworth:Heinemann,2009:278–320.
    [19]刘维宁,夏禾,郭文军.地铁列车振动的环境响应[J].岩石力学与工程学报,1996,15(增):586–593.(LIU Weining,XIA He,GUO Wenjun.Study of vibration effects of underground trains on surrounding environments[J].Chinese Journal of Rock Mechanics and Engineering,1996,15(Supp.):586–593.(in Chinese))
    [20]董亮,赵成刚,蔡德钩,等.高速铁路路基的动力响应分析方法[J].工程力学,2008,25(11):231–240.(DONG Liang,ZHAO Chenggang,CAI Degou,et al.Method for dynamic response of subgrade subjected to high-speed moving load[J].Engineering Mechanics,2008,25(11):231–240.(in Chinese))
    [21]白冰,李春风.地铁列车振动作用下近距离平行隧道的弹塑性动力响应[J].岩土力学,2009,30(1):123–128.(BAI Bing,LI Chunfeng.Elastoplastic dynamic responses of close parallel metro tunnels to vibration loading[J].Rock and Soil Mechanics,2009,30(1):123–128.(in Chinese))
    [22]CUNDALL P A.FLAC user manual[R].Minneapolis:Itasca Consulting Group Inc.,1998.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心