TMD和ATMD组合系统对施工状态斜拉桥的风振减振研究
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
该文研究分布式TMD(tuned mass dampers)和ATMD(active tuned mass dampers)对斜拉桥抖振响应竖向减振的优化设计和减振效果,采用H∞控制理论设计分布式TMD和ATMD,并通过对竖向减振效果的评价实现控制方案优化。以处于施工状态的南京长江三桥为例,考虑自激力对气动刚度和阻尼的贡献,实现分布式TMD和ATMD参数的同步优化和控制器设计,对斜拉桥抖振响应及其竖向减振进行数值分析,结果显示若仅采用分布式TMD或分布式ATMD将难于同时实现对斜拉桥位移和加速度响应的有效减振,而采用分布式TMD和ATMD的组合系统并对结构多个模态振型调谐,可有效减小施工状态斜拉桥的竖向风振响应。
This research is on the design optimization and performance control of tuned mass dampers(TMDs) and active tuned mass dampers(ATMDs).H∞ control synthesis algorithm is used to design the multi-distributed TMDs and ATMDs,and through the estimation of control efficiency,an optimal control scheme is obtained.Taking the 3rd Nanjing Bridge over Yangtze River as an example,the analytical model is established here.Considering the contribution of self-excited force to aerodynamic damping and stiffness,the parameters of the multi-distributed TMDs and ATMDs are optimized at the same time and the controller is designed.Controlled performance for buffeting response of the bridge is numerically analyzed.Results show that both the multi-distributed TMDs and ATMDs have limitation in practice and can not achieve good performance for the control of displacement response and acceleration response of the cable-stayed bridge under construction at the same time.An effective scheme of hybrid system combining TMDs with ATMDs that are tuned to different modes shows good efficiency for the wind-induced vibration control of the cable-stayed bridge.
引文
[1]欧进萍.结构振动控制——主动、半主动和智能控制[M].北京:科学出版社,2003.Ou Jinping.Structural vibration control—active,semi-active and smart control[M].Beijing:Science Press,2003.(in Chinese)
    [2]Yang J N,Agrawal A K,Samali B,Wu J C.Benchmark problem for response control of wind-excited tall buildings[J].Journal of Engineering Mechanics,2004,130(4):437―466.
    [3]Cao H,Reinhorn A M,Song T T.Design of an active mass damper for a tall TV tower in Nanjing,China[J].Engineering Structures,1998,20(3):134―143.
    [4]Yamazaki S,Nagata N,Abiru H.Tuned active dampers installed in the Minato Mirai(MM)21 Landmark Tower in Yokohama[J].Journal of Wind Engineering&Industrial Aerodynamics,1992,43(1-3):1937―1948.
    [5]文永奎,孙利民.大跨度斜拉桥钢塔施工阶段振动控制[J].同济大学学报,2006,34(9):1153―1158.Wen Yongkui,Sun Limin.Vibration control of steel tower of large span cable-stayed bridge under construction[J].Journal of Tongji University,2006,34(9):1153―1158.(in Chinese)
    [6]Warburton G B,Ayorinde E O.Optimum absorber parameters for simple systems[J].Earthquake Engineering and Structural Dynamics,1982,8:197―217.
    [7]李小珍,蔡婧,强士中.南京长江二桥南汊桥地震反应的主动控制及AMD系统参数设计[J].工程力学,2003,20(4):78―85.Li Xiaozhen,Cai Jing,Qiang Shizhong.Active control of seismic response and design of AMD system parameters for the 2nd Nanjing Yangtze-river bridge[J].Engineering Mechanics,2003,20(4):78―85.(in Chinese)
    [8]Schemmann A G,Smith H A.Vibration control of cable-stayed bridges—part 1:modeling issues[J].Earthquake Engineering and Structural Dynamics,1998,27(8):811―824.
    [9]Dyke S J,Caicedo J M,Turan G,Bergman L A,Hague S.Phase I benchmark control problem for seismic response of cable-stayed bridges[J].Journal of Structural Engineering,2003,129(7):857―872.
    [10]丁泉顺.大跨度桥梁耦合颤抖振响应的精细化分析[M].上海:同济大学,2001.Ding Quanshun.Refinement of coupled flutter and buffeting analysis for long-span bridges[M].Shanghai:Tongji University,2001.(in Chinese)
    [11]Jones N P,Scanlan R H.Theory and full-bridge modeling of wind response of cable-supported bridge[J].Journal of Bridge Engineering,2001,6:365―375.
    [12]Jabbari F,Schmitenforf W E,Yang J N.H∞control for seismic-excited buildings with accelerations feedback[J].Journal of Engineering Mechanics,1995,121(9):994―1002.
    [13]朱乐东.南京长江第三大桥主桥箱梁节段模型风洞试验研究[R].上海:同济大学土木工程防灾国家重点实验室,2003.Zhu Ledong.Report of wind tunnel test of girder section model of the 3rd Nanjing Bridge over Yangtze-river[R].Shanghai:State Key Laboratory for Disaster Reduction of Civil Engineering,2003.(in Chinese)

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心