钢轨扣件减振橡胶动态特性分析
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
基于黏弹性材料动态恢复力由非线性弹性恢复力和非线性阻尼力叠加而成的理论基础,运用理论与动态试验相结合的方法,提出一种钢轨扣件减振橡胶动态恢复力模型,着重揭示一阶、三阶和五阶动刚度对激励频率和振幅的依赖性。运用最小二乘拟合法确定各阶动刚度中所含未知参数,并利用理论模型重构恢复力-位移回线,最终将其与试验曲线相比较。研究结果表明:钢轨扣件减振橡胶具有明显的非线性特性,其动态刚度与振幅和频率之间呈复杂的曲面关系;本文所建动态力学模型可为钢轨扣件减振橡胶的动态分析和优化设计提供了一定的理论支持。
A non-linear dynamic mechanical model of rubber absorber in railway fastening was proposed,which was based on a superposition of non-linear elastic restoring force and non-linear damping force.This calculation model emphasized the first-order,the third-order and the fifth-order dynamic stiffness coefficients dependence on amplitude and frequency.A procedure to determine the unknown parameters of mathematical model was also described.The calculated results finally show good agreement with the measurement results after comparative analysis.The present model should therefore be trustworthy in the field of railway fastenings rubber absorber dynamics analysis and simulation.A conclusion comes after intense and close analysis that the relationship between amplitude,frequency and the dynamic stiffness coefficients are of a complicated relative surface rather than a simplified curve.
引文
[1]XIAO Xin-bao,JIN Xue-song,WEN Ze-feng.Effect of disabledfastening systems and ballast on vehicle derailment[J].Journal ofVibration and Acoustics,2007,129(2):217-229.
    [2]Bezin Y,Iwnicki S D.An investigation of sleeper voids using aflexible track model integrated with railway muti-bodydynamics[J].Proceedings of the Institution of MechanicalEngineers,Part F:Journal of Rail and Rapid Transit,2009,223(6):597-607.
    [3]Christensen R M.Theory of viscoelasticity:An introduction[M].Beijing:Elsevier,1990:263-348.
    [4]曾攀,阎贵平.铅芯橡胶支座动力特性对连续梁桥地震响应的影响[J].铁道学报,2001,23(5):96-101.ZENG Pan,YAN Gui-ping.Influence of dynamic characteristicsof lead-rubber bearing on seismic response of continuous beambridge[J].Journal of Railway Society,2001,23(5):96-101.
    [5]方明霞,冯奇,陈江红.汽车迟滞非线性动力系统仿真研究[J].汽车技术,2006(11):23-28.FANG Ming-xia,FENG Qi,CHEN Jiang-hong.Simulatingresearch of automobile hysteresis nonlinear dynamic system[J].Automobile Technology,2006(11):23-28.
    [6]Andrés L S.Measurement of structural stiffness and dampingcoefficients in a metal mesh foil bearing[J].Journal ofEngineering for Gas Turbines and Power,2010,132:1-7.
    [7]DONG Xing-en.Characterization of hysteresis damping with amultiple frequency analysis method[D].Cookeville,USA:Tennessee Technological University,1996:68-72.
    [8]Badrakhan F.Dynamic analysis of yielding and hysteretic systemby polynomial approximation[J].Journal of Sound and Vibration,1988,125(1):23-42.
    [9]Baber T T,Noori M N.Modeling general hysteresis behavior andrandom vibration application[J].Journal of Vibration,1986,108(4):411-420.
    [10]Badrakban F.Rational study of hysteretic systems understationary random excitation[J].International Journal ofNon-linear Mechanics,1987:22(4):312-315.
    [11]Masrt S F.Forced vibration of the damped bilinear hystereticoscillator[J].Journal of Acoustical Society of America,1975:57(1):106-112.
    [12]Rao S S.Mechanical vibrations[M].Beijing:TsinghuaUniversity Press,2009:169-173.
    [13]韩德宝,宋希庚,薛冬新.橡胶减振器非线性动态特性的试验研究[J].振动工程学报,2008,21(1):102-106.HAN De-bao,SONG Xi-geng,XUE Dong-xin.Experiment onnonlinear dynamic characteristics of rubber isolator[J].Journalof Vibration Engineering,2008,21(1):102-106.
    [14]方明霞.轿车橡胶支承迟滞非线性系统模型建立和参数识别[J].合成橡胶工业,2006,29(3):177-180.FANG Ming-xia.Modeling and identification of car rubbersupporting nonlinear hysteretic systems[J].China SyntheticRubber Industry,2006,29(3):177-180.
    [15]Sj-berg M,Kari L.Testing of nonlinear interaction effects ofsinusoidal and noise excitation on rubber isolator stiffness[J].Polymer Testing,2003,22:343-351.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心