川藏联网工程复合材料电气设备地震模拟振动台试验研究
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
复合材料电气设备由于其具有质量小强度高的材料特点,已在部分变电站内推广应用,但对于复合材料电气设备的抗震性能,尤其对于其真型设备的地震模拟振动台的试验研究,各国学者研究较少。依托于川藏联网工程,在总结国内外复合材料电气设备抗震研究成果的基础上,结合我国已有电气设备抗震研究成果,开展了适用于复合材料电气设备抗震性能评估方法的研究,确定了复合材料电气设备振动台试验输入波形、波形峰值加速度以及设备抗震能力判定原则,采用此方法对800 k V高抗套管、220 k V GIS外绝缘套管、110 k V及220 k V避雷器分别进行地震模拟振动台试验,得到了设备的动力特性和地震响应。由试验结果可以看出,参与试验的复合材料电气设备应力均满足设计基本加速度为0.4 g的抗震要求。
Electrical equipment of composite material has been applied in some substations,due to its characteristics of lighter quality and higher breaking strength. However,little research has been done in the seismic behavior of electrical equipment of composite material,especially for the experimental study of earthquake simulation shaking table. Based on the Sichuan-Tibet interconnection project,this paper summarized the researches on the seismic behavior of electrical equipment of composite material at home and abroad,and then studied its assessment method combined with the existing research on the seismic behavior of electrical equipment in China. Then,the input waveform,the peak acceleration and the judging principle of seismic ability also had been confirmed for the shaking table test of composite materials electric equipment. With using this method,800 k V HV reactor bushing,220 k V GIS external insulation bushing,110 k V and 220 k V lightning arresters were tested respectively on earthquake simulation shaking table,and the dynamic characteristics and seismic response of the equipment were obtained. The test results show that the stresses on the tested electrical equipments of composite material all meet the seismic requirements of 0. 4 g designed basic acceleration.
引文
[1]程永锋,朱全军,卢智成.变电站电力设施抗震措施研究现状与发展趋势[J].电网技术,2008,32(22):84-89.Cheng Yongfeng,Zhu Quanjun,Lu Zhicheng.Progress and development trend on seismic measures of electric power equipments in transformer substation[J].Power System Technology,2008,32(22):84-89.
    [2]Kumosa L S,Kumosa M S,Armentrout D L.Resistance to brittle fracture of glass reinforced polymer composites used in composite(non-ceramic)insulators[J].IEEE Transactions on Power Delivery,2005,20(4):2657-2666.
    [3]Survey of utility experinces with composite/polymer components in transmission glass(69-765 k V class)substations[R].Palo Alto,CA:EPRI,2004.
    [4]GB/T 1447—2005纤维增强塑料拉伸性能试验方法[S].北京:中国标准出版社,2005.
    [5]GB/T 1448—2005纤维增强塑料压缩性能试验方法[S].北京:中国标准出版社,2005.
    [6]GB/T 1449—2005纤维增强塑料弯曲性能试验方法[S].北京:中国标准出版社,2005.
    [7]ASTM D 4225 Standard test method for in-plane shear properties of ploymer matrix of composite materials by the railshear method[S].American Socitry for Testings and Materials.
    [8]GB/T 3355—2005纤维增强塑料纵横剪切试验方法[S].北京:中国标准出版社,2005.
    [9]沈观林,胡更开.复合材料力学[M].北京:清华大学出版社,2006.
    [10]Kaw A K.Mechanics of composite materials[M].Taylor&Francis Group,2006.
    [11]Pugno N,Carpinteri A.Tubular adhesive joints under axial load[J].Journal of Applied Mechanics,2003(70):832-839.
    [12]Je Hoon Oh.Torque capacity of tubular adhesive joints with different composite adherends[J].Materials Letters,2008,62(8-9):1234-1237.
    [13]Toshiyuki S,Kohei I,Yuichiro S,et al.A three-dimensional finite element stress analysis and strength prediction of stepped-lap adhesive joints of dissimilar adherends subjected to bending moments[J].International Journal of Adhesion&Adhesives,2010,30(5):298-305.
    [14]Cheng Jinquan,Wu Xiaoxia,Li Guoqiang,et al.Design and analysis of a smart composite pipe joint system integrated with piezoelectric layers under bending[J].International Journal of Solids and Structures,2007(44):298-319.
    [15]Khalili S M R,Shokuhfar A,Hoseini S D,et al.Experimental study of the influence of adhesive reinforcement in lap joints for composite structures subjected to mechanical loads[J].International Journal of Adhesion&Adhesives,2008,28(8):436-444.
    [16]Zhao Libin,Gong Yu,Qin Tianliang,et al.Failure prediction of out-of-plane woven composite joints using cohesive element[J].Composite Structures,2013(106):407-416.
    [17]Schiff A J,Leon Kempner,Jr.IEEE 693 Seismic Qualification of Composite for Substation High-voltage Equipment.13th World Conference on Earthquake Engineering[C]//Vancouver,BC,Canada,2004:2306-2310.
    [18]Roh H,Oliveto N D,Reinhorn A M.Experimental test and modeling of hollow-core composite insulators[J].Nonlinear Dynamics,2012,69(4):1651-1663.
    [19]IEC 61462 Composite Insulators-Hollow insulators for use in outdoor and indoor electrical equipment-Definitions,test methods,acceptance criteria and design recommendations[S].International Electrotechnical Commission(IEC),2007.
    [20]IEEE Standard 693—2005 IEEE Recommended Practice for Seismic Design of Substations[S].IEEE Power Engineering Society,2006.
    [21]中国电力企业联合会.GB 50260—2013电力设施抗震设计规范[S].北京:中国计划出版社,2013.
    [22]尤红兵,张郁山,赵凤新.电气设备振动台试验输入的合理确定[J].电网技术,2012,36(5):118-124.You Hongbing,Zhang Yushan,Zhao Fengxin.Reasonable determination of input waves for shake-table test of electrical equipments[J].Power System Technology,2012,36(5):118-124.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心