桥梁结构基于性能的抗震设防目标与性能指标研究
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
针对我国公路桥梁抗震规范中,地震作用水平相对单一且从E1地震到E2地震的重现期相差较大的现状,提出E1′地震作用水平和E2′地震作用水平,取其50年内的超越概率分别为40%和2%~3%;将桥梁结构划分为"五档"性能水平,结合4个地震作用水平,建立17个结构抗震性能目标和"四水准"的抗震设防目标;建立桥梁构件对应其力学性能的"五档"性能水平,结合"四水准"抗震设防目标,形成了C类桥梁结构对应于不同抗震设防目标的构件性能水平,完善了桥梁结构基于性能抗震设计的基本框架。在分析国内外127个以发生弯曲破坏为主的钢筋混凝土圆形截面桥墩试验研究的基础上,建立了钢筋混凝土桥墩在地震作用下处于5个性能水平的量化指标。通过与新西兰、日本和美国加州等设计规范中相关规定的比较,结果表明:该文建议的钢筋混凝土桥墩不同性能水平变形位移角限值是合理的,可用于基于性能抗震设计时桥墩墩顶位移的确定。鉴于合理性能目标确定依赖于大量试验数据积累,建议统一性能目标试验数据记录模板。
Because the consideration is quite simple in an earthquake hazard level and a marked difference in probability of exceedance between earthquake action E1 and earthquake action E2 in guidelines for seismic design of highway bridges,a new definition of earthquake action E1′ with the occurrence probability of 40% in 50 years and earthquake action E2′ with the occurrence probability of 2%-3% in 50 years is proposed,and the bridge structure performance levels categorized into five grades are established.Seventeen structure performance objectives and four seismic fortification criteria are formed.To relate bridge component to its mechanical properties at the five designated performance levels,component performance levels for different seismic fortification criterion in C bridge structures are established.It is expected that performance-based seismic design for bridge structure can be improved.Based on the statistical data of 127 seismic performance tests of RC bridge columns with circular section subjected to flexural failure,five indices for the same five designated performance levels are put forward.Comparing the drift ratio of five designated performance levels with the provisions among New Zealand standard,Japan design code,and American design code,the results show that the drift ratios for five designated performance levels is reasonable and effective.It can be used to determine displacement of pier top in the performance based seismic design.In view of performance objectives dependent on a large amount of experimental results,evaluation template for experimental results is proposed.
引文
[1]California Office of Emergency Service.Performancebased seismic engineering of buildings[S].Version 2000.California:Version 2000 Committee,StructuralEngineering Association of California,1995.
    [2]FEMA273.NEHRP commentary on the guidelines forthe rehabilitation of buildings[R].Washington,DC:Federal Emergency Management Agency,1996.
    [3]ATC.ATC-40,Seismic evaluation and retrofit of concretebuildings[R].California:Applied Technology Council,1996.
    [4]FEMA356.Pre-standard and commentary for theseismic rehabilitation of buildings[R].Washington,DC:Federal Emergency Management Agency,2000.
    [5]Mander J B,Dhakal R P,Mashiko N,Solberg K M.Incremental dynamic analysis applied to seismicfinancial risk assessment of bridges[J].EngineeringStructures,2007,29(10):2662―2672.
    [6]中华人民共和国国家标准.GB50011-2001建筑抗震设计规范[S].北京:中国建筑工业出版社,2001.National Standard of the People’s Republic of China.GB50011-2001 Code for seismic design of buildings[S].Beijing:China Architecture&Building Press,2001.(inChinese)
    [7]JTG/T B02-01-2008,公路桥梁抗震设计细则[S].北京:人民交通出版社,2008.JTG/T B02-01-2008,Guidelines for seismic design ofhighway bridges[S].Beijing:China CommunicationsPress,2008.(in Chinese)
    [8]中国交通部标准.JTJ004-89,公路工程抗震设计规范[S].北京:人民交通出版社,1989.China Ministry of Communication.JTJ 004-89,Specifications of earthquake resistant design for highwayengineering[S].Beijing:China Communications Press,1989.(in Chinese)
    [9]李应斌,刘伯权,史庆轩.基于结构性能的抗震设计理论研究与展望[J].地震工程与工程振动,2001,21(4):73―79.Li Yingbin,Liu Boquan,Shi Qingxuan.Research anddevelopment of performance-based seismic design theory[J].Earthquake Engineering and Engineering Vibration,2001,21(4):73―79.(in Chinese)
    [10]Iqbal A.Performance evaluation of Bolu viaducts interms of performance-based seismic design of bridges[C]//Beattie G,Stirling M.New Zealand Society forEarthquake Engineering,Palmerston North,2007:57―66.
    [11]门进杰,史庆轩,周琦.框架结构基于性能的抗震设防目标和性能指标的量化[J].土木工程学报,2008,41(9):76―82.Men Jinjie,Shi Qingxuan,Zhou Qi.Performance-basedseismic fortification criterion and quantified performanceindex for reinforced concrete frame structures[J].ChinaCivil Engineering Journal,2008,41(9):76―82.(inChinese)
    [12]Ghobarah A.Performance-based design in earthquakeengineering:state of development[J].EngineeringStructures,2001,23(8):878―884.
    [13]Hose Y D,Seible F.Performance evaluation database forconcrete bridge components and systems under simulatedseismic loads[R].California:Pacific EarthquakeEngineering Research Center,1999.
    [14]Ang Beng Ghee,Priestley M J N,Paulay T.Seismicshear strength of circular reinforced concrete columns[J].ACI Structural Journal,1989,86(1):45―59.
    [15]Lim K Y,McLean D I.Scale model studies ofmoment-reducing hinge details in bridge columns[J].ACI Structural Journal,1991,88(4):465―474.
    [16]Cheok G S,Stone William C.Behavior of1/6-scalemodel bridge columns subjected to inelastic cyclicloading[J].ACI Structural Journal,1990,87(6):630―638.
    [17]Wong Y L,Paulay T,Priestley M J N.Response ofcircular reinforced concrete columns to multi-directionalseismic attack[J].ACI Structural Journal,1993,90(2):180―191.
    [18]Hose Y D,Seible F,Priestley M J N.Strategic relocationof plastic hinges in bridge columns[R].California:University of California,1997.
    [19]Saatcioglu M,Baingo D.Circular high-strength concretecolumns under simulated seismic loading[J].ASCEJournal of Structural Engineering,1999,125(3):272―280.
    [20]Chai Yuk,Priestley M J N,Seible Frieder.Seismicretrofit of circular bridge columns for enhanced flexuralperformance[J].ACI Structural Journal,1991,88(5):572―584.
    [21]Moyer M J,Kowalsky M J.Influence of tension strain onbuckling of reinforcement in RC bridge columns[J].ACIStructural Journal,2003,100(1):75―85.
    [22]Mosalam K M,Naito C J,Khaykina S.Bidirectionalcyclic performance of reinforced concrete bridgecolumn-superstructure subassemblies[J].EarthquakeSpectra,2002,18(4):663―687.
    [23]Lee J H,Ko S H,Choi J H.Shear strength and capacityprotection of RC bridge columns[C]//Bruneau M,Tsai KC,Lee G C,et al.ANCER Annual Meeting,Honolulu:Ancer,2004.
    [24]Lehman D,Moehle J P,Mahin S,Calderone A,Henry L.Experimental evaluation of the seismic performance ofreinforced concrete bridge columns[J].ASCE Journal ofStructural Engineering,2004,130(6):869―879.
    [25]Priestley M J N,Benzoni G.Seismic performance ofcircular columns with low longitudinal reinforcementratios[J].ACI Structural Journal,1996,93(4):1―12.
    [26]Zahn F A.Design of reinforced concrete bridge columnsfor strength and ductility[D].New Zealand:Universityof Canterbury,1985.
    [27]McLean David I,Lim Kuang Y.Moment-reducing hingedetails for the bases of bridge columns[R].Washington:Washington State University,1990.
    [28]Kunnath S K,Ashraf E B,Taylor A,Stone W C.Cumulative seismic damage of reinforced concretebridge piers[R].Maryland:National Center forEarthquake Engineering Research,1997.
    [29]Lehman D E,Moehle J P.Seismic performance ofwell-confined concrete bridge columns[R].California:Pacific Earthquake Engineering Research Center,2000.
    [30]Calderone A J,Lehman D E,Moehle J P.Behavior ofreinforced concrete bridge columns having varyingaspect ratios and varying lengths of confinement[R].California:Pacific Earthquake Engineering ResearchCenter,2001.
    [31]Naoto M.Comparative performance of ductile anddamage protected bridge piers subjected to bi-directionalearthquake attack[D].New Zealand:University ofCanterbury,2006.
    [32]Naito C J,Moehle J P,Mosalam K M.Experimental andcomputational evaluation of reinforced concrete bridgebeam-column connections for seismic performance[R].California:Pacific Earthquake Engineering ResearchCenter,2001.
    [33]Orozco G L,Ashford S A.Effects of large velocity pulseson reinforced concrete bridge columns[R].California:Pacific Earthquake Engineering Research Center,2002.
    [34]Hindi R,Turechek W.Experimental behavior of circularconcrete columns under reversed cyclic loading[J].Construction and Building Materials,2008,22(4):684―693.
    [35]Saiidi M S,Cheng Z Y,Sanders D.Experimental study oftwo-way reinforced concrete column hinges under.seismic loads[J].ACI Structural Journal,2009,106(3):340―348.
    [36]Gibson N,Filiatrault A,Ashford S.Performance of beamto column bridge joints subjected to a large velocitypulse[R].California:Pacific Earthquake EngineeringResearch Center,2002.
    [37]Chung Y S,Park C K,Meyer C.Residual seismicperformance of reinforced concrete bridge piers aftermoderate earthquakes[J].ACI Structural Journal,2008,105(1):87―95.
    [38]Esmaeily-Gh A,Xiao Y.Seismic behavior of bridgecolumns subjected to various loading patterns[R].California:Pacific Earthquake Engineering ResearchCenter,2002.
    [39]Prakash S,Belarbi A,You Y M.Seismic performance ofcircular RC columns subjected to axial force,bending,and torsion with low and moderate shear[J].EngineeringStructures,2009,32(1):46―59.
    [40]Dodd L.The Dynamic behaviour of reinforced-concretebridge piers subjected to New Zealand seismicity[D].New Zealand:University of Canterbury,1992.
    [41]鞠彦忠,阎贵平,刘林.低配筋大比例尺圆端型桥墩抗震性能的试验研究[J].土木工程学报,2003,36(11):65―69.Ju Yanzhong,Yan Guiping,Liu Lin.Experimental studyon seismic behaviors of large-scale RC round-endedpiers with low reinforcement ratio[J].China CivilEngineering Journal,2003,36(11):65―69.(in Chinese)
    [42]司炳君,李宏男,王东升.基于位移设计的钢筋混凝土桥墩抗震性能试验研究(I):拟静力试验[J].地震工程与工程振动,2008,28(1):123―129.Si Bingjun,Li Hongnan,Wang Dongsheng.Experimentalevaluation of the seismic performance of reinforcedconcrete bridge piers designed on the bases ofdisplacement(I):Quasi-static test[J].Journal ofEarthquake Engineering and Engineering Vibration,2008,28(1):123―129.(in Chinese)
    [43]Kowalsky M J,Priestley M J N,Seible F.Shear andflexural behavior of lightweight concrete bridge columnsin seismic regions[J].ACI Structural Journal,1999,96(1):136―148.
    [44]Esmaeily A,Xiao Y.Behavior of reinforced concretecolumns under variable axial loads[J].ACI StructuralJournal,2004,101(1):124―132.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心