砂卵石地层盾构施工引发的滞后地面塌陷机理
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
针对砂卵石地层盾构施工地面突发塌陷频发的情况,结合成都地铁1、2号线地面塌陷实例,研究了盾构施工引发的滞后地面塌陷机理;分析了砂卵石地层地质条件,利用大型三轴剪切试验获得其力学特性;选用颗粒离散元法进行数值计算,通过三轴数值试验标定了土体的细观参数;通过数值计算模拟了开挖面失稳和空洞向地表移动。研究结果表明,当开挖面支护压力较小时,位移大于0.1m的颗粒接触力极低,该区域的土体孔隙率变大、力学性质也降低,该区域是开挖面失稳区,掘进过后将在盾构上方形成空洞;砂卵石层开挖面上方土体成拱作用明显,即使土层内部形成空洞,也不会立刻引起地面塌陷,这是地面滞后塌陷的重要原因。
As for many lagged surface collapse cases that shield crosses the sandy cobble stratum in Chengdu metro No.1 and 2 lines,lagged surface collapse mechanism in sandy pebble stratum was studied.Conditions of engineering geology about sandy cobble stratum were analyzed.Mechanical behavior of sandy pebble was obtained via large-scale tri-axial test.Discrete element method was adopted for numerical computation on lagged surface collapse mechanism.According to the tri-axial numerical test method,the relation between the micro parameters and macro parameters of the sandy pebble stratum layer in Chengdu was calibrated.The face failure of shield tunneling and upward movement of cavity was simulated by numerical calculation.When supporting pressure is small,the particles with the displacement of over 0.1 m have low contact force.The porosity of earth in the region becomes larger and its mechanical behavior becomes worse.Therefore the region can be identified as instability region.Cavity in the ground will be caused after shield tunneling.Soil arching effect is obvious under shield construction.Even though there is cavity in the ground,surface collapse will not bring about immediately.This is important reason for lagged surface collapse phenomena of shield construction in sandy pebble stratum.
引文
[1]罗松,张浩然.成都富水砂卵石地层盾构施工滞后塌陷防控措施探讨[J].隧道建设,2010,30(3):317-320.Luo S,Zhang H R.Discussion on prevention and controlof delayed settlement induced by shield tunneling in water-rich sandy cobble stratum in Chengdu[J].TunnelConstruction,2010,30(3):317-320.
    [2]侯艳娟,张顶立,李鹏飞.北京地铁施工安全事故分析及防治对策[J].北京交通大学学报,2009,33(3):52-59.Hou Y J,Zhang D L,Li P F.Analysis and controlmeasures of safety accidents in Beijing subway construction[J].Journal of Beijing Jiaotong University,2009,33(3):52-59.
    [3]范子福,李锋,杜胜华.川气东送武汉穿江盾构隧道地面塌陷勘察[J].人民长江.2009,40(5):77-79.
    [4]李希元,闫静雅.盾构隧道施工工程事故的原因与对策[J].地下空间与工程学报,2005,1(6):965-971.Li X Y,Yan J Y.Reasons and countermeasures ofaccidents happened during the shield tunnel construction[J].Chinese Journal of Underground Space andEngineering,2005,1(6):965-971.
    [5]纪万斌,林景星,齐文同.塌陷与建筑[M].北京:地震出版社,1998.
    [6]贺可强,王滨,万继涛.枣庄岩溶塌陷形成机制与致塌模型的研究[J].岩土力学,2002,23(5):564-569.He K Q,Wang B,Wan J T.Study on formingmechanism of Zaozhuang karstcollapse and collapsemodel[J].Rock and Soil Mechanics,2002,23(5):564-569.
    [7]王滨,贺可强.岩溶塌陷临界土洞的极限平衡高度公式[J].岩土力学,2006,27(3):458-462.Wang B,He K Q.Study on limit equilibrium heightexpression of critical soil cave of karstcollapse[J].Rock and Soil Mechanics,2006,27(3):458-462.
    [8]刘玉成,曹树刚,刘延保.可描述地表沉陷动态过程的时间函数模型探讨[J].岩土力学,2010,31(3):925-931.Liu Y C,Cao S G,Liu Y B.Discussion on some timefunctions for describing dynamic course of surfacesubsidence due to mining[J].Rock and SoilMechanics,2010,31(3):925-931.
    [9]李靖坤,李术希.地铁盾构隧道地表塌陷分析与对策[J].长沙铁道学院学报:社会科学版,2007,8(2):211-212.
    [10]刘仁智.EPB盾构在地层掘进出现地表塌陷分析及处理[J].西部探矿工程,2005(10):99-100.
    [11]马汉春,王旭,由伟,等.某地铁隧道盾构机始发阶段地面塌陷原因分析[J].现代隧道技术,2010,47(3):75-80.Ma H C,Wang X,You W,et al.Cause analysis on theground collapses during the launching period of a metroshield[J].Modern Tunnelling Technology,2010,47(3):75-80.
    [12]张成平,张顶立,王梦恕.城市隧道施工诱发的地面塌陷灾变机制及其控制[J].岩土力学,2010,31(Sup1):303-309.Zhang C P,Zhang D L,Wang M S.Catastrophemechanism and control technology of ground collapseinduced by urban tunneling[J].Rock and SoilMechanics,2010,31(Sup1):303-309.
    [13]杨书江,孙谋.富水砂卵石地层盾构施工技术[M].北京:人民交通出版社,2011.
    [14]朱伟,秦建设,卢廷浩.砂土中盾构开挖面变形与破坏数值计算研究[J].岩土工程学报,2005,27(8):897-902.Zhu W,Qin J S,Lu T H.Numerical study on facemovement and collapse around shield tunnels in sand[J].Chinese Journal of Geotechnical Engineering,2005,27(8):897-902.
    [15]王明年,魏龙海,刘大刚.卵石地层中地下铁道施工力学的颗粒离散元法模拟技术及应用[M].成都:西南交通大学出版社,2010.
    [16]ASM Masud Karim.Three-dimensional discrete elementmodeling of tunneling in sand[D].Edmonton:Universityof Alberta,2007.
    [17]王明年,魏龙海.成都地铁卵石层中盾构施工开挖面稳定性研究[J].岩土力学,2011,32(1):99-105.Wang M N,Wei L H.Study of face stability of cobble-soil shield tunneling at Chengdu metro[J].Rock andSoil Mechanics,2011,32(1):99-105.
    [18]黄正荣,朱伟.浅埋砂土中盾构法盾构开挖面极限支护压力及稳定研究[J].岩土工程学报,2006,28(11):2005-2009.Huang Z R,Zhu W.Study on limit supporting pressureand stabilization of excavation face for shallow shieldtunnels in sand[J].Chinese Journal of GeotechnicalEngineering,2006,28(11):2005-2009.
    [19]Chambon P,CortéJ F.Shallow tunnel in cohesionlesssoil:Stability of tunnel face[J].Journal ofGeotechnical Engineering,1994,120(7):1148-1165.
    [20]Kamata H,Masimo H.Centrifuge model test of tunnelface reinforcement by bolting[J].Tunneling andUnderground Space Technology,2003,18(2):205-212.
    [21]Kjrsch A.Experimental and numerical investigation ofthe face stability of shallow tunnels in sand[C]//Proceedings of the ITA-AITES World TunnelCongress,Kocsonya,2009.
    [22]Itasca Consulting Group Inc.PFC3D(particle flow codein 3 dimensions)theory and background[R].Minnesota,USA:Itasca Consulting Group Inc,2002.
    [23]ASM Masud Karim.Three-dimensional discrete elementmodeling of tunneling in sand[D].Edmonton:Universityof Alberta,2007.
    [24]蒋波,应宏伟,谢康和.基于土拱效应的筒舱土压力研究[J].科技通报,2005,21(5):624-632.Jiang B,Ying H W,Xie K H.Study on earth pressureon silos based on soil arching[J].Bulletin of Scienceand Technology,2005,21(5):624-632.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心