高阶振型对高墩桥梁抗震性能的影响及其识别
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
针对高60 m、90 m的典型高墩桥梁,运用增量动力分析方法(IDA)和基于基阶振型的非线性静力推导方法(MPA)计算高墩屈服位移、极限位移、位移延性以及临界状态的墩身曲率分布,通过两种方法计算结果的对比分析,评价不同地震波激励下,高阶振型对桥墩延性能力的影响。描述不同地震作用下曲率沿墩高的分布,指出高墩桥梁在强震作用下,除墩底塑性铰外,还会在墩身中上部形成第二个塑性铰区域,并绘制能力谱和需求谱识别高墩在不同临界状态下各高阶振型进入塑性的程度,证实墩身出现塑性铰主要是由于第二阶振形的贡献。
For bridges with 60m、90m pier height,yield displacements,ultimate one,displacement ductility and curvature distribution of the critical state were determined with the incremental dynamic analysis(IDA) and pushover method considering the fundamental mode(MPA).After analyzing the results from IDA and MPA,the effect of higher modal shapes on pier ductility was evaluated under different earthquakes.Curvature distribution along piers under different earthquakes were described to reveal that under the action of strong earthquake plastic hinges are developed at the middle and the upper parts of pier except the base of pier.Capacity diagrams and demand diagrams were developed to identify the plastic level of higher mode respectively in different critical states,they were used to verify that the occurrence of plastic hinge at middle and upper parts of pier is attributed to the contribution of the second modal shape.
引文
[1]JTG/T B02-01-2008公路桥梁抗震设计细则[S].北京:人民交通出版社,2008.
    [2]California Department of Transportation.Caltrans seismic design criteria version1.5[S].September2009,Business Transportation and Housing Agency,State of California,2009.
    [3]Sasaki K K,Freeman S A,Paret T F.Multi-mode pushover procedure(MMP)-A method to identify the effects of higher modes in a pushover analysis[J].Proc.of the Sixth USNational Conference on Earthquake Engineering,Earthquake Engineering Research Inst,Oka.1and,California,1998:1-12.
    [4]Krawinkler H,Senevirations G D P K.Pros and cons of a pushover analysis of seismic performance evaluation[J].Engineering Structures,1998,20(4):452-464.
    [5]Panagiotou M,Restrepo J I.Dual-plastic hinge design concept for reducing higher-mode effects on high-rise cantilever wall buildings[J].Earthquake Engineering and Structural Dynamics,2009,38:1359-1380.
    [6]Ceravolo R,Demarie G V,Giordano L,et al.Problems in applying code-specified capacity design procedures to seismic design of tall piers[J].Engineering Structures,2009,31(8):1811-1821.
    [7]李建中,宋晓东,范立础.桥梁高墩位移延性能力的探讨[J].地震工程与工程振动,2005,25(1):43-48.
    [8]宋晓东.桥梁高墩延性抗震性能的理论与试验研究[D].上海:同济大学,2004.
    [9]梁智垚.非规则高墩桥梁抗震设计理论研究[D].上海:同济大学,2007.
    [10]吕红山,赵风新.适用于中国场地分类的地震动反应谱放大系数[J].地震学报,2007,29(1):67-76.
    [11]梁智垚,李建中.桥梁高墩合理计算模型探讨[J].地震工程与工程振动,2007,27(2):91-98.
    [12]Silvia M,Frank M,Michael H.Open system for earthquake engineering simulation user manual[M].Berkeley:Pacific Earthquake Engineering Research Center,University of California,2007.
    [13]Goel R K,EERI M,Chopra A K.Role of higher-“mode”pushover analyses in seismic analysis of buildings[J].Earthquake Spectra,2005,21(4):1027-1041.
    [14]Priestley M J N,Seible F,Calvi G M.Seismic design and retrofit of bridges[M].New York:John Wiley&Sons,1996.
    [15]Dimitrios V C,Allin C.Incremental dynamic analysis[J].Earthquake Engineering and Structural Dynamics,2002,31:491-514.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心